Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling
Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mec...
Ausführliche Beschreibung
Autor*in: |
Okeke, Saviour I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 116(2021), 1-2 vom: 15. Juni, Seite 241-258 |
---|---|
Übergeordnetes Werk: |
volume:116 ; year:2021 ; number:1-2 ; day:15 ; month:06 ; pages:241-258 |
Links: |
---|
DOI / URN: |
10.1007/s00170-021-07404-9 |
---|
Katalog-ID: |
OLC2126992446 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126992446 | ||
003 | DE-627 | ||
005 | 20230505123335.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-021-07404-9 |2 doi | |
035 | |a (DE-627)OLC2126992446 | ||
035 | |a (DE-He213)s00170-021-07404-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Okeke, Saviour I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. | ||
650 | 4 | |a Linear friction welding | |
650 | 4 | |a Inconel 718 | |
650 | 4 | |a Delta phase | |
650 | 4 | |a Microstructural modelling | |
650 | 4 | |a Time-temperature equivalence | |
650 | 4 | |a Multiphysics modelling | |
700 | 1 | |a Harrison, Noel M. |0 (orcid)0000-0001-5596-2723 |4 aut | |
700 | 1 | |a Tong, Mingming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 116(2021), 1-2 vom: 15. Juni, Seite 241-258 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:116 |g year:2021 |g number:1-2 |g day:15 |g month:06 |g pages:241-258 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-021-07404-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 116 |j 2021 |e 1-2 |b 15 |c 06 |h 241-258 |
author_variant |
s i o si sio n m h nm nmh m t mt |
---|---|
matchkey_str |
article:02683768:2021----::isltoodlahsinbsduealyuigierrcinednitgaemlihsc |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00170-021-07404-9 doi (DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p DE-627 ger DE-627 rakwb eng 670 VZ Okeke, Saviour I. verfasserin aut Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling Harrison, Noel M. (orcid)0000-0001-5596-2723 aut Tong, Mingming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 116(2021), 1-2 vom: 15. Juni, Seite 241-258 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 https://doi.org/10.1007/s00170-021-07404-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 116 2021 1-2 15 06 241-258 |
spelling |
10.1007/s00170-021-07404-9 doi (DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p DE-627 ger DE-627 rakwb eng 670 VZ Okeke, Saviour I. verfasserin aut Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling Harrison, Noel M. (orcid)0000-0001-5596-2723 aut Tong, Mingming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 116(2021), 1-2 vom: 15. Juni, Seite 241-258 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 https://doi.org/10.1007/s00170-021-07404-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 116 2021 1-2 15 06 241-258 |
allfields_unstemmed |
10.1007/s00170-021-07404-9 doi (DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p DE-627 ger DE-627 rakwb eng 670 VZ Okeke, Saviour I. verfasserin aut Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling Harrison, Noel M. (orcid)0000-0001-5596-2723 aut Tong, Mingming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 116(2021), 1-2 vom: 15. Juni, Seite 241-258 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 https://doi.org/10.1007/s00170-021-07404-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 116 2021 1-2 15 06 241-258 |
allfieldsGer |
10.1007/s00170-021-07404-9 doi (DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p DE-627 ger DE-627 rakwb eng 670 VZ Okeke, Saviour I. verfasserin aut Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling Harrison, Noel M. (orcid)0000-0001-5596-2723 aut Tong, Mingming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 116(2021), 1-2 vom: 15. Juni, Seite 241-258 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 https://doi.org/10.1007/s00170-021-07404-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 116 2021 1-2 15 06 241-258 |
allfieldsSound |
10.1007/s00170-021-07404-9 doi (DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p DE-627 ger DE-627 rakwb eng 670 VZ Okeke, Saviour I. verfasserin aut Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling Harrison, Noel M. (orcid)0000-0001-5596-2723 aut Tong, Mingming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 116(2021), 1-2 vom: 15. Juni, Seite 241-258 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 https://doi.org/10.1007/s00170-021-07404-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 116 2021 1-2 15 06 241-258 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 116(2021), 1-2 vom: 15. Juni, Seite 241-258 volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 116(2021), 1-2 vom: 15. Juni, Seite 241-258 volume:116 year:2021 number:1-2 day:15 month:06 pages:241-258 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Okeke, Saviour I. @@aut@@ Harrison, Noel M. @@aut@@ Tong, Mingming @@aut@@ |
publishDateDaySort_date |
2021-06-15T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2126992446 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126992446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505123335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07404-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126992446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07404-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okeke, Saviour I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear friction welding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inconel 718</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delta phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-temperature equivalence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphysics modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harrison, Noel M.</subfield><subfield code="0">(orcid)0000-0001-5596-2723</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Mingming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">116(2021), 1-2 vom: 15. Juni, Seite 241-258</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:241-258</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07404-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2021</subfield><subfield code="e">1-2</subfield><subfield code="b">15</subfield><subfield code="c">06</subfield><subfield code="h">241-258</subfield></datafield></record></collection>
|
author |
Okeke, Saviour I. |
spellingShingle |
Okeke, Saviour I. ddc 670 misc Linear friction welding misc Inconel 718 misc Delta phase misc Microstructural modelling misc Time-temperature equivalence misc Multiphysics modelling Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
authorStr |
Okeke, Saviour I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling Linear friction welding Inconel 718 Delta phase Microstructural modelling Time-temperature equivalence Multiphysics modelling |
topic |
ddc 670 misc Linear friction welding misc Inconel 718 misc Delta phase misc Microstructural modelling misc Time-temperature equivalence misc Multiphysics modelling |
topic_unstemmed |
ddc 670 misc Linear friction welding misc Inconel 718 misc Delta phase misc Microstructural modelling misc Time-temperature equivalence misc Multiphysics modelling |
topic_browse |
ddc 670 misc Linear friction welding misc Inconel 718 misc Delta phase misc Microstructural modelling misc Time-temperature equivalence misc Multiphysics modelling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
ctrlnum |
(DE-627)OLC2126992446 (DE-He213)s00170-021-07404-9-p |
title_full |
Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
author_sort |
Okeke, Saviour I. |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
241 |
author_browse |
Okeke, Saviour I. Harrison, Noel M. Tong, Mingming |
container_volume |
116 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Okeke, Saviour I. |
doi_str_mv |
10.1007/s00170-021-07404-9 |
normlink |
(ORCID)0000-0001-5596-2723 |
normlink_prefix_str_mv |
(orcid)0000-0001-5596-2723 |
dewey-full |
670 |
title_sort |
dissolution of delta phase in ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
title_auth |
Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
abstract |
Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. © The Author(s) 2021 |
abstractGer |
Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. © The Author(s) 2021 |
abstract_unstemmed |
Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
1-2 |
title_short |
Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling |
url |
https://doi.org/10.1007/s00170-021-07404-9 |
remote_bool |
false |
author2 |
Harrison, Noel M. Tong, Mingming |
author2Str |
Harrison, Noel M. Tong, Mingming |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-021-07404-9 |
up_date |
2024-07-04T09:10:53.297Z |
_version_ |
1803639065998786560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126992446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505123335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07404-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126992446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07404-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okeke, Saviour I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linear friction welding (LFW) is an increasingly popular solid-state joining method for challenging applications such as integrated blade disk of aero-engines. However, the influence of friction-generated heat on the material microstructural evolution, material deformation and resultant mechanical performance of the manufactured components is not well understood. A novel integrated multiphysics computational modelling is presented for predicting the component-scale microstructural evolution of IN718 alloy during LFW. A modified time-temperature equivalence formulation was implemented for predicting the evolution of the δ phase, which was coupled with thermomechanical modelling of the LFW process. There is reasonably good agreement between the computational modelling results of this paper and the experimental results from the literature in terms of δ phase volume fraction and weld temperature. The integrated multiphysics computational modelling predicts the influence of process parameters on thermomechanical and microstructural processes of IN718 LFW. By systematically analysing the influence of 10 different LFW process parameter configurations, the friction pressure was identified as the most influential process parameter determining the extent of δ phase dissolution and weld temperature during LFW.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear friction welding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inconel 718</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delta phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-temperature equivalence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphysics modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harrison, Noel M.</subfield><subfield code="0">(orcid)0000-0001-5596-2723</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Mingming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">116(2021), 1-2 vom: 15. Juni, Seite 241-258</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:241-258</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07404-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2021</subfield><subfield code="e">1-2</subfield><subfield code="b">15</subfield><subfield code="c">06</subfield><subfield code="h">241-258</subfield></datafield></record></collection>
|
score |
7.4013557 |