The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes
Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-bel...
Ausführliche Beschreibung
Autor*in: |
Yang, Junxiang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering mathematics - Springer Netherlands, 1967, 129(2021), 1 vom: Aug. |
---|---|
Übergeordnetes Werk: |
volume:129 ; year:2021 ; number:1 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s10665-021-10155-x |
---|
Katalog-ID: |
OLC2127115120 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127115120 | ||
003 | DE-627 | ||
005 | 20230505130357.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10665-021-10155-x |2 doi | |
035 | |a (DE-627)OLC2127115120 | ||
035 | |a (DE-He213)s10665-021-10155-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Yang, Junxiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. | ||
650 | 4 | |a Energy stability | |
650 | 4 | |a Gradient flows | |
650 | 4 | |a S-TSAV approach | |
650 | 4 | |a Stabilization technique | |
700 | 1 | |a Kim, Junseok |0 (orcid)0000-0002-0484-9189 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering mathematics |d Springer Netherlands, 1967 |g 129(2021), 1 vom: Aug. |w (DE-627)129595748 |w (DE-600)240689-5 |w (DE-576)015088766 |x 0022-0833 |7 nnns |
773 | 1 | 8 | |g volume:129 |g year:2021 |g number:1 |g month:08 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10665-021-10155-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 129 |j 2021 |e 1 |c 08 |
author_variant |
j y jy j k jk |
---|---|
matchkey_str |
article:00220833:2021----::hsaiietiooercclruiirvralapocfrrdet |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10665-021-10155-x doi (DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p DE-627 ger DE-627 rakwb eng 510 VZ Yang, Junxiang verfasserin aut The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. Energy stability Gradient flows S-TSAV approach Stabilization technique Kim, Junseok (orcid)0000-0002-0484-9189 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 129(2021), 1 vom: Aug. (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:129 year:2021 number:1 month:08 https://doi.org/10.1007/s10665-021-10155-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 129 2021 1 08 |
spelling |
10.1007/s10665-021-10155-x doi (DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p DE-627 ger DE-627 rakwb eng 510 VZ Yang, Junxiang verfasserin aut The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. Energy stability Gradient flows S-TSAV approach Stabilization technique Kim, Junseok (orcid)0000-0002-0484-9189 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 129(2021), 1 vom: Aug. (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:129 year:2021 number:1 month:08 https://doi.org/10.1007/s10665-021-10155-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 129 2021 1 08 |
allfields_unstemmed |
10.1007/s10665-021-10155-x doi (DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p DE-627 ger DE-627 rakwb eng 510 VZ Yang, Junxiang verfasserin aut The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. Energy stability Gradient flows S-TSAV approach Stabilization technique Kim, Junseok (orcid)0000-0002-0484-9189 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 129(2021), 1 vom: Aug. (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:129 year:2021 number:1 month:08 https://doi.org/10.1007/s10665-021-10155-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 129 2021 1 08 |
allfieldsGer |
10.1007/s10665-021-10155-x doi (DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p DE-627 ger DE-627 rakwb eng 510 VZ Yang, Junxiang verfasserin aut The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. Energy stability Gradient flows S-TSAV approach Stabilization technique Kim, Junseok (orcid)0000-0002-0484-9189 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 129(2021), 1 vom: Aug. (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:129 year:2021 number:1 month:08 https://doi.org/10.1007/s10665-021-10155-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 129 2021 1 08 |
allfieldsSound |
10.1007/s10665-021-10155-x doi (DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p DE-627 ger DE-627 rakwb eng 510 VZ Yang, Junxiang verfasserin aut The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. Energy stability Gradient flows S-TSAV approach Stabilization technique Kim, Junseok (orcid)0000-0002-0484-9189 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 129(2021), 1 vom: Aug. (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:129 year:2021 number:1 month:08 https://doi.org/10.1007/s10665-021-10155-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 129 2021 1 08 |
language |
English |
source |
Enthalten in Journal of engineering mathematics 129(2021), 1 vom: Aug. volume:129 year:2021 number:1 month:08 |
sourceStr |
Enthalten in Journal of engineering mathematics 129(2021), 1 vom: Aug. volume:129 year:2021 number:1 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Energy stability Gradient flows S-TSAV approach Stabilization technique |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of engineering mathematics |
authorswithroles_txt_mv |
Yang, Junxiang @@aut@@ Kim, Junseok @@aut@@ |
publishDateDaySort_date |
2021-08-01T00:00:00Z |
hierarchy_top_id |
129595748 |
dewey-sort |
3510 |
id |
OLC2127115120 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127115120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505130357.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-021-10155-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127115120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-021-10155-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Junxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-TSAV approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization technique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Junseok</subfield><subfield code="0">(orcid)0000-0002-0484-9189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">129(2021), 1 vom: Aug.</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-021-10155-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Yang, Junxiang |
spellingShingle |
Yang, Junxiang ddc 510 misc Energy stability misc Gradient flows misc S-TSAV approach misc Stabilization technique The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
authorStr |
Yang, Junxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595748 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-0833 |
topic_title |
510 VZ The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes Energy stability Gradient flows S-TSAV approach Stabilization technique |
topic |
ddc 510 misc Energy stability misc Gradient flows misc S-TSAV approach misc Stabilization technique |
topic_unstemmed |
ddc 510 misc Energy stability misc Gradient flows misc S-TSAV approach misc Stabilization technique |
topic_browse |
ddc 510 misc Energy stability misc Gradient flows misc S-TSAV approach misc Stabilization technique |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of engineering mathematics |
hierarchy_parent_id |
129595748 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of engineering mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 |
title |
The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
ctrlnum |
(DE-627)OLC2127115120 (DE-He213)s10665-021-10155-x-p |
title_full |
The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
author_sort |
Yang, Junxiang |
journal |
Journal of engineering mathematics |
journalStr |
Journal of engineering mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Yang, Junxiang Kim, Junseok |
container_volume |
129 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Yang, Junxiang |
doi_str_mv |
10.1007/s10665-021-10155-x |
normlink |
(ORCID)0000-0002-0484-9189 |
normlink_prefix_str_mv |
(orcid)0000-0002-0484-9189 |
dewey-full |
510 |
title_sort |
the stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
title_auth |
The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
abstract |
Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
1 |
title_short |
The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes |
url |
https://doi.org/10.1007/s10665-021-10155-x |
remote_bool |
false |
author2 |
Kim, Junseok |
author2Str |
Kim, Junseok |
ppnlink |
129595748 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10665-021-10155-x |
up_date |
2024-07-04T09:39:42.809Z |
_version_ |
1803640879517270016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127115120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505130357.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-021-10155-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127115120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-021-10155-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Junxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-TSAV approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stabilization technique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Junseok</subfield><subfield code="0">(orcid)0000-0002-0484-9189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">129(2021), 1 vom: Aug.</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-021-10155-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.402237 |