Refrigeration Below 1 Kelvin
Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search an...
Ausführliche Beschreibung
Autor*in: |
Cao, Haishan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 204(2021), 5-6 vom: 13. Juli, Seite 175-205 |
---|---|
Übergeordnetes Werk: |
volume:204 ; year:2021 ; number:5-6 ; day:13 ; month:07 ; pages:175-205 |
Links: |
---|
DOI / URN: |
10.1007/s10909-021-02606-7 |
---|
Katalog-ID: |
OLC2127148223 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127148223 | ||
003 | DE-627 | ||
005 | 20230505124443.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-021-02606-7 |2 doi | |
035 | |a (DE-627)OLC2127148223 | ||
035 | |a (DE-He213)s10909-021-02606-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Cao, Haishan |e verfasserin |0 (orcid)0000-0003-1621-8592 |4 aut | |
245 | 1 | 0 | |a Refrigeration Below 1 Kelvin |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. | ||
650 | 4 | |a Dilution refrigeration | |
650 | 4 | |a Pomeranchuk cooling | |
650 | 4 | |a Electron demagnetization | |
650 | 4 | |a Nuclear demagnetization | |
650 | 4 | |a Tunnel junction cooling | |
650 | 4 | |a Laser cooling | |
650 | 4 | |a Evaporative cooling | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 204(2021), 5-6 vom: 13. Juli, Seite 175-205 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:204 |g year:2021 |g number:5-6 |g day:13 |g month:07 |g pages:175-205 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-021-02606-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 204 |j 2021 |e 5-6 |b 13 |c 07 |h 175-205 |
author_variant |
h c hc |
---|---|
matchkey_str |
article:00222291:2021----::ergrtoblw |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10909-021-02606-7 doi (DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p DE-627 ger DE-627 rakwb eng 530 VZ Cao, Haishan verfasserin (orcid)0000-0003-1621-8592 aut Refrigeration Below 1 Kelvin 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling Enthalten in Journal of low temperature physics Springer US, 1969 204(2021), 5-6 vom: 13. Juli, Seite 175-205 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 https://doi.org/10.1007/s10909-021-02606-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 AR 204 2021 5-6 13 07 175-205 |
spelling |
10.1007/s10909-021-02606-7 doi (DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p DE-627 ger DE-627 rakwb eng 530 VZ Cao, Haishan verfasserin (orcid)0000-0003-1621-8592 aut Refrigeration Below 1 Kelvin 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling Enthalten in Journal of low temperature physics Springer US, 1969 204(2021), 5-6 vom: 13. Juli, Seite 175-205 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 https://doi.org/10.1007/s10909-021-02606-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 AR 204 2021 5-6 13 07 175-205 |
allfields_unstemmed |
10.1007/s10909-021-02606-7 doi (DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p DE-627 ger DE-627 rakwb eng 530 VZ Cao, Haishan verfasserin (orcid)0000-0003-1621-8592 aut Refrigeration Below 1 Kelvin 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling Enthalten in Journal of low temperature physics Springer US, 1969 204(2021), 5-6 vom: 13. Juli, Seite 175-205 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 https://doi.org/10.1007/s10909-021-02606-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 AR 204 2021 5-6 13 07 175-205 |
allfieldsGer |
10.1007/s10909-021-02606-7 doi (DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p DE-627 ger DE-627 rakwb eng 530 VZ Cao, Haishan verfasserin (orcid)0000-0003-1621-8592 aut Refrigeration Below 1 Kelvin 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling Enthalten in Journal of low temperature physics Springer US, 1969 204(2021), 5-6 vom: 13. Juli, Seite 175-205 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 https://doi.org/10.1007/s10909-021-02606-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 AR 204 2021 5-6 13 07 175-205 |
allfieldsSound |
10.1007/s10909-021-02606-7 doi (DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p DE-627 ger DE-627 rakwb eng 530 VZ Cao, Haishan verfasserin (orcid)0000-0003-1621-8592 aut Refrigeration Below 1 Kelvin 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling Enthalten in Journal of low temperature physics Springer US, 1969 204(2021), 5-6 vom: 13. Juli, Seite 175-205 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 https://doi.org/10.1007/s10909-021-02606-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 AR 204 2021 5-6 13 07 175-205 |
language |
English |
source |
Enthalten in Journal of low temperature physics 204(2021), 5-6 vom: 13. Juli, Seite 175-205 volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 |
sourceStr |
Enthalten in Journal of low temperature physics 204(2021), 5-6 vom: 13. Juli, Seite 175-205 volume:204 year:2021 number:5-6 day:13 month:07 pages:175-205 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Cao, Haishan @@aut@@ |
publishDateDaySort_date |
2021-07-13T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2127148223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127148223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505124443.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-021-02606-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127148223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-021-02606-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Haishan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1621-8592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Refrigeration Below 1 Kelvin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution refrigeration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pomeranchuk cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron demagnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear demagnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunnel junction cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporative cooling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">204(2021), 5-6 vom: 13. Juli, Seite 175-205</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:13</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:175-205</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-021-02606-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="b">13</subfield><subfield code="c">07</subfield><subfield code="h">175-205</subfield></datafield></record></collection>
|
author |
Cao, Haishan |
spellingShingle |
Cao, Haishan ddc 530 misc Dilution refrigeration misc Pomeranchuk cooling misc Electron demagnetization misc Nuclear demagnetization misc Tunnel junction cooling misc Laser cooling misc Evaporative cooling Refrigeration Below 1 Kelvin |
authorStr |
Cao, Haishan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Refrigeration Below 1 Kelvin Dilution refrigeration Pomeranchuk cooling Electron demagnetization Nuclear demagnetization Tunnel junction cooling Laser cooling Evaporative cooling |
topic |
ddc 530 misc Dilution refrigeration misc Pomeranchuk cooling misc Electron demagnetization misc Nuclear demagnetization misc Tunnel junction cooling misc Laser cooling misc Evaporative cooling |
topic_unstemmed |
ddc 530 misc Dilution refrigeration misc Pomeranchuk cooling misc Electron demagnetization misc Nuclear demagnetization misc Tunnel junction cooling misc Laser cooling misc Evaporative cooling |
topic_browse |
ddc 530 misc Dilution refrigeration misc Pomeranchuk cooling misc Electron demagnetization misc Nuclear demagnetization misc Tunnel junction cooling misc Laser cooling misc Evaporative cooling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Refrigeration Below 1 Kelvin |
ctrlnum |
(DE-627)OLC2127148223 (DE-He213)s10909-021-02606-7-p |
title_full |
Refrigeration Below 1 Kelvin |
author_sort |
Cao, Haishan |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
175 |
author_browse |
Cao, Haishan |
container_volume |
204 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Cao, Haishan |
doi_str_mv |
10.1007/s10909-021-02606-7 |
normlink |
(ORCID)0000-0003-1621-8592 |
normlink_prefix_str_mv |
(orcid)0000-0003-1621-8592 |
dewey-full |
530 |
title_sort |
refrigeration below 1 kelvin |
title_auth |
Refrigeration Below 1 Kelvin |
abstract |
Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_4126 |
container_issue |
5-6 |
title_short |
Refrigeration Below 1 Kelvin |
url |
https://doi.org/10.1007/s10909-021-02606-7 |
remote_bool |
false |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-021-02606-7 |
up_date |
2024-07-04T09:46:27.986Z |
_version_ |
1803641304370905088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127148223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505124443.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-021-02606-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127148223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-021-02606-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Haishan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1621-8592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Refrigeration Below 1 Kelvin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There is a growing demand for refrigeration techniques to reach temperatures below 1 K because these temperatures are critical for a wide range of rapidly developing applications, mainly in the fields of quantum information science, electromagnetic radiation detection, dark matter search and condensed matter physics. A number of methods exist for realizing these temperatures, including 3He-based cooling (3He evaporation, dilution refrigeration and Pomeranchuk cooling), solid-state cooling (electron demagnetization, nuclear demagnetization and tunnel junction cooling), laser cooling and evaporative cooling among others. Here, this study presents basic principles of these methods and summarizes the corresponding advances in operating temperature ranges and cooling capacities, with the goal of identifying each method’s pros and cons. It is concluded with discussions of the challenges with these methods and key points for improving their performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution refrigeration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pomeranchuk cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron demagnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear demagnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunnel junction cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporative cooling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">204(2021), 5-6 vom: 13. Juli, Seite 175-205</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:13</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:175-205</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-021-02606-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="b">13</subfield><subfield code="c">07</subfield><subfield code="h">175-205</subfield></datafield></record></collection>
|
score |
7.401434 |