Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau
Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as...
Ausführliche Beschreibung
Autor*in: |
Zheng, Kui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 28(2021), 33 vom: 20. Apr., Seite 45765-45779 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2021 ; number:33 ; day:20 ; month:04 ; pages:45765-45779 |
Links: |
---|
DOI / URN: |
10.1007/s11356-021-13561-x |
---|
Katalog-ID: |
OLC2127237781 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127237781 | ||
003 | DE-627 | ||
005 | 20230505125110.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-021-13561-x |2 doi | |
035 | |a (DE-627)OLC2127237781 | ||
035 | |a (DE-He213)s11356-021-13561-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Zheng, Kui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. | ||
650 | 4 | |a REE | |
650 | 4 | |a PAAS-normalized distribution patterns | |
650 | 4 | |a Depth profile | |
650 | 4 | |a Dust provenance | |
650 | 4 | |a Tibetan glaciers | |
700 | 1 | |a Li, Yuefang |0 (orcid)0000-0002-1956-5621 |4 aut | |
700 | 1 | |a Li, Zhen |4 aut | |
700 | 1 | |a Huang, Ju |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 28(2021), 33 vom: 20. Apr., Seite 45765-45779 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2021 |g number:33 |g day:20 |g month:04 |g pages:45765-45779 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-021-13561-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 28 |j 2021 |e 33 |b 20 |c 04 |h 45765-45779 |
author_variant |
k z kz y l yl z l zl j h jh |
---|---|
matchkey_str |
article:09441344:2021----::rvnnercnodsuigaeateeetircnsodpstduighpeososaofomutigai |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11356-021-13561-x doi (DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Kui verfasserin aut Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers Li, Yuefang (orcid)0000-0002-1956-5621 aut Li, Zhen aut Huang, Ju aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 28(2021), 33 vom: 20. Apr., Seite 45765-45779 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 https://doi.org/10.1007/s11356-021-13561-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2021 33 20 04 45765-45779 |
spelling |
10.1007/s11356-021-13561-x doi (DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Kui verfasserin aut Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers Li, Yuefang (orcid)0000-0002-1956-5621 aut Li, Zhen aut Huang, Ju aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 28(2021), 33 vom: 20. Apr., Seite 45765-45779 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 https://doi.org/10.1007/s11356-021-13561-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2021 33 20 04 45765-45779 |
allfields_unstemmed |
10.1007/s11356-021-13561-x doi (DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Kui verfasserin aut Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers Li, Yuefang (orcid)0000-0002-1956-5621 aut Li, Zhen aut Huang, Ju aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 28(2021), 33 vom: 20. Apr., Seite 45765-45779 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 https://doi.org/10.1007/s11356-021-13561-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2021 33 20 04 45765-45779 |
allfieldsGer |
10.1007/s11356-021-13561-x doi (DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Kui verfasserin aut Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers Li, Yuefang (orcid)0000-0002-1956-5621 aut Li, Zhen aut Huang, Ju aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 28(2021), 33 vom: 20. Apr., Seite 45765-45779 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 https://doi.org/10.1007/s11356-021-13561-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2021 33 20 04 45765-45779 |
allfieldsSound |
10.1007/s11356-021-13561-x doi (DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Kui verfasserin aut Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers Li, Yuefang (orcid)0000-0002-1956-5621 aut Li, Zhen aut Huang, Ju aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 28(2021), 33 vom: 20. Apr., Seite 45765-45779 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 https://doi.org/10.1007/s11356-021-13561-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2021 33 20 04 45765-45779 |
language |
English |
source |
Enthalten in Environmental science and pollution research 28(2021), 33 vom: 20. Apr., Seite 45765-45779 volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 |
sourceStr |
Enthalten in Environmental science and pollution research 28(2021), 33 vom: 20. Apr., Seite 45765-45779 volume:28 year:2021 number:33 day:20 month:04 pages:45765-45779 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Zheng, Kui @@aut@@ Li, Yuefang @@aut@@ Li, Zhen @@aut@@ Huang, Ju @@aut@@ |
publishDateDaySort_date |
2021-04-20T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2127237781 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127237781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505125110.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-021-13561-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127237781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-021-13561-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Kui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAAS-normalized distribution patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Depth profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dust provenance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tibetan glaciers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuefang</subfield><subfield code="0">(orcid)0000-0002-1956-5621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Ju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">28(2021), 33 vom: 20. Apr., Seite 45765-45779</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:33</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:45765-45779</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-021-13561-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="e">33</subfield><subfield code="b">20</subfield><subfield code="c">04</subfield><subfield code="h">45765-45779</subfield></datafield></record></collection>
|
author |
Zheng, Kui |
spellingShingle |
Zheng, Kui ddc 570 ddc 690 fid BIODIV misc REE misc PAAS-normalized distribution patterns misc Depth profile misc Dust provenance misc Tibetan glaciers Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
authorStr |
Zheng, Kui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau REE PAAS-normalized distribution patterns Depth profile Dust provenance Tibetan glaciers |
topic |
ddc 570 ddc 690 fid BIODIV misc REE misc PAAS-normalized distribution patterns misc Depth profile misc Dust provenance misc Tibetan glaciers |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc REE misc PAAS-normalized distribution patterns misc Depth profile misc Dust provenance misc Tibetan glaciers |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc REE misc PAAS-normalized distribution patterns misc Depth profile misc Dust provenance misc Tibetan glaciers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
ctrlnum |
(DE-627)OLC2127237781 (DE-He213)s11356-021-13561-x-p |
title_full |
Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
author_sort |
Zheng, Kui |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
45765 |
author_browse |
Zheng, Kui Li, Yuefang Li, Zhen Huang, Ju |
container_volume |
28 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Zheng, Kui |
doi_str_mv |
10.1007/s11356-021-13561-x |
normlink |
(ORCID)0000-0002-1956-5621 |
normlink_prefix_str_mv |
(orcid)0000-0002-1956-5621 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern tibetan plateau |
title_auth |
Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
abstract |
Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
33 |
title_short |
Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau |
url |
https://doi.org/10.1007/s11356-021-13561-x |
remote_bool |
false |
author2 |
Li, Yuefang Li, Zhen Huang, Ju |
author2Str |
Li, Yuefang Li, Zhen Huang, Ju |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-021-13561-x |
up_date |
2024-07-04T10:05:50.559Z |
_version_ |
1803642523423342592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127237781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505125110.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-021-13561-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127237781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-021-13561-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Kui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To provide insight into dust sources in snow deposited during the non-monsoon period on the Tibetan Plateau, detailed post-Archean Australian shale (PAAS)-normalized rare earth element (REE) distribution patterns and variations in REE tracers, such as La/Yb, La/Er, and Gd/Yb with depth, as well as the distribution of samples in the plots of REE ratio pairs, such as La/Yb vs. Y/ΣREE, La/Er vs. Gd/Er, and Y/La vs. Nd/Er, were compared in seven potential dust source areas in Asia. Snow samples from five glaciers, i.e., Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), and Gurenhekou (GRHK), were collected from April 26 to May 13 before the onset of monsoon activity. The results show that dust trapped in snow pits from the studied glaciers, i.e., QMLK, MK, XDKMD, and GRHK, has varying degrees of contribution from the Taklimakan Desert, Qaidam Basin, and the surface soil of the Tibetan Plateau. There are signals of the Tengger and Badain Jaran Desert and Chinese Loess in the MK and XDKMD snow pit samples or in the QMLK and GRHK surface samples from the REE tracers; however, from the point of view of the land location, the three dust sources should not be the major contributors. Signals of dust from the Indian Thar Desert were occasionally detected from the MK, YZF, and XDKMD snow pit samples and GRHK surface snow samples, implying the intrusion of early Indian monsoon activities to the sites. The dust signal from the Thar Desert in India from the YZF glacier is significantly greater than that from the XDKMD and MK glaciers. These findings were also supported by the tracer of dust transmitted to the three snow pits through the air mass backward trajectories. The new finding of this study is that dust from the Indian Desert can even reach the Kunlun Mountains in the northern region of the Tibetan Plateau. The conclusions are helpful in interpreting the sources of dust and the pollutants absorbed by dust particles, as well as the extent of the impact of Indian monsoon activities at the end of the non-monsoon season on the plateau.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAAS-normalized distribution patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Depth profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dust provenance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tibetan glaciers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuefang</subfield><subfield code="0">(orcid)0000-0002-1956-5621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Ju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">28(2021), 33 vom: 20. Apr., Seite 45765-45779</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:33</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:45765-45779</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-021-13561-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2021</subfield><subfield code="e">33</subfield><subfield code="b">20</subfield><subfield code="c">04</subfield><subfield code="h">45765-45779</subfield></datafield></record></collection>
|
score |
7.401041 |