On the class of order L-weakly and order M-weakly compact operators
Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \lon...
Ausführliche Beschreibung
Autor*in: |
Lhaimer, Driss [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
L-weakly compact operator M-weakly compact operator Order L-weakly compact operator |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Positivity - Springer International Publishing, 1997, 25(2021), 4 vom: 19. Apr., Seite 1569-1578 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2021 ; number:4 ; day:19 ; month:04 ; pages:1569-1578 |
Links: |
---|
DOI / URN: |
10.1007/s11117-021-00829-2 |
---|
Katalog-ID: |
OLC2127279360 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127279360 | ||
003 | DE-627 | ||
005 | 20230505125408.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11117-021-00829-2 |2 doi | |
035 | |a (DE-627)OLC2127279360 | ||
035 | |a (DE-He213)s11117-021-00829-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Lhaimer, Driss |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the class of order L-weakly and order M-weakly compact operators |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 | ||
520 | |a Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. | ||
650 | 4 | |a L-weakly compact operator M-weakly compact operator | |
650 | 4 | |a Order weakly compact operator | |
650 | 4 | |a Order L-weakly compact operator | |
650 | 4 | |a Order M-weakly compact operator | |
650 | 4 | |a Order continuous norm | |
650 | 4 | |a Banach lattice | |
700 | 1 | |a Bouras, Khalid |4 aut | |
700 | 1 | |a Moussa, Mohammed |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Positivity |d Springer International Publishing, 1997 |g 25(2021), 4 vom: 19. Apr., Seite 1569-1578 |w (DE-627)243279434 |w (DE-600)1426263-0 |w (DE-576)066430526 |x 1385-1292 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2021 |g number:4 |g day:19 |g month:04 |g pages:1569-1578 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11117-021-00829-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 25 |j 2021 |e 4 |b 19 |c 04 |h 1569-1578 |
author_variant |
d l dl k b kb m m mm |
---|---|
matchkey_str |
article:13851292:2021----::nhcasfrelekynodrwal |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11117-021-00829-2 doi (DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Lhaimer, Driss verfasserin aut On the class of order L-weakly and order M-weakly compact operators 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice Bouras, Khalid aut Moussa, Mohammed aut Enthalten in Positivity Springer International Publishing, 1997 25(2021), 4 vom: 19. Apr., Seite 1569-1578 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 https://doi.org/10.1007/s11117-021-00829-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 25 2021 4 19 04 1569-1578 |
spelling |
10.1007/s11117-021-00829-2 doi (DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Lhaimer, Driss verfasserin aut On the class of order L-weakly and order M-weakly compact operators 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice Bouras, Khalid aut Moussa, Mohammed aut Enthalten in Positivity Springer International Publishing, 1997 25(2021), 4 vom: 19. Apr., Seite 1569-1578 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 https://doi.org/10.1007/s11117-021-00829-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 25 2021 4 19 04 1569-1578 |
allfields_unstemmed |
10.1007/s11117-021-00829-2 doi (DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Lhaimer, Driss verfasserin aut On the class of order L-weakly and order M-weakly compact operators 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice Bouras, Khalid aut Moussa, Mohammed aut Enthalten in Positivity Springer International Publishing, 1997 25(2021), 4 vom: 19. Apr., Seite 1569-1578 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 https://doi.org/10.1007/s11117-021-00829-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 25 2021 4 19 04 1569-1578 |
allfieldsGer |
10.1007/s11117-021-00829-2 doi (DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Lhaimer, Driss verfasserin aut On the class of order L-weakly and order M-weakly compact operators 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice Bouras, Khalid aut Moussa, Mohammed aut Enthalten in Positivity Springer International Publishing, 1997 25(2021), 4 vom: 19. Apr., Seite 1569-1578 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 https://doi.org/10.1007/s11117-021-00829-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 25 2021 4 19 04 1569-1578 |
allfieldsSound |
10.1007/s11117-021-00829-2 doi (DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Lhaimer, Driss verfasserin aut On the class of order L-weakly and order M-weakly compact operators 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice Bouras, Khalid aut Moussa, Mohammed aut Enthalten in Positivity Springer International Publishing, 1997 25(2021), 4 vom: 19. Apr., Seite 1569-1578 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 https://doi.org/10.1007/s11117-021-00829-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 25 2021 4 19 04 1569-1578 |
language |
English |
source |
Enthalten in Positivity 25(2021), 4 vom: 19. Apr., Seite 1569-1578 volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 |
sourceStr |
Enthalten in Positivity 25(2021), 4 vom: 19. Apr., Seite 1569-1578 volume:25 year:2021 number:4 day:19 month:04 pages:1569-1578 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Positivity |
authorswithroles_txt_mv |
Lhaimer, Driss @@aut@@ Bouras, Khalid @@aut@@ Moussa, Mohammed @@aut@@ |
publishDateDaySort_date |
2021-04-19T00:00:00Z |
hierarchy_top_id |
243279434 |
dewey-sort |
3510 |
id |
OLC2127279360 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127279360</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505125408.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11117-021-00829-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127279360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11117-021-00829-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lhaimer, Driss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the class of order L-weakly and order M-weakly compact operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-weakly compact operator M-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order L-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order M-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order continuous norm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouras, Khalid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moussa, Mohammed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">25(2021), 4 vom: 19. Apr., Seite 1569-1578</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1569-1578</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11117-021-00829-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">1569-1578</subfield></datafield></record></collection>
|
author |
Lhaimer, Driss |
spellingShingle |
Lhaimer, Driss ddc 510 ssgn 17,1 misc L-weakly compact operator M-weakly compact operator misc Order weakly compact operator misc Order L-weakly compact operator misc Order M-weakly compact operator misc Order continuous norm misc Banach lattice On the class of order L-weakly and order M-weakly compact operators |
authorStr |
Lhaimer, Driss |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)243279434 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1385-1292 |
topic_title |
510 VZ 17,1 ssgn On the class of order L-weakly and order M-weakly compact operators L-weakly compact operator M-weakly compact operator Order weakly compact operator Order L-weakly compact operator Order M-weakly compact operator Order continuous norm Banach lattice |
topic |
ddc 510 ssgn 17,1 misc L-weakly compact operator M-weakly compact operator misc Order weakly compact operator misc Order L-weakly compact operator misc Order M-weakly compact operator misc Order continuous norm misc Banach lattice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc L-weakly compact operator M-weakly compact operator misc Order weakly compact operator misc Order L-weakly compact operator misc Order M-weakly compact operator misc Order continuous norm misc Banach lattice |
topic_browse |
ddc 510 ssgn 17,1 misc L-weakly compact operator M-weakly compact operator misc Order weakly compact operator misc Order L-weakly compact operator misc Order M-weakly compact operator misc Order continuous norm misc Banach lattice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Positivity |
hierarchy_parent_id |
243279434 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Positivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 |
title |
On the class of order L-weakly and order M-weakly compact operators |
ctrlnum |
(DE-627)OLC2127279360 (DE-He213)s11117-021-00829-2-p |
title_full |
On the class of order L-weakly and order M-weakly compact operators |
author_sort |
Lhaimer, Driss |
journal |
Positivity |
journalStr |
Positivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1569 |
author_browse |
Lhaimer, Driss Bouras, Khalid Moussa, Mohammed |
container_volume |
25 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Lhaimer, Driss |
doi_str_mv |
10.1007/s11117-021-00829-2 |
dewey-full |
510 |
title_sort |
on the class of order l-weakly and order m-weakly compact operators |
title_auth |
On the class of order L-weakly and order M-weakly compact operators |
abstract |
Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
abstractGer |
Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
abstract_unstemmed |
Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 |
container_issue |
4 |
title_short |
On the class of order L-weakly and order M-weakly compact operators |
url |
https://doi.org/10.1007/s11117-021-00829-2 |
remote_bool |
false |
author2 |
Bouras, Khalid Moussa, Mohammed |
author2Str |
Bouras, Khalid Moussa, Mohammed |
ppnlink |
243279434 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11117-021-00829-2 |
up_date |
2024-07-04T10:15:33.636Z |
_version_ |
1803643134816550913 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127279360</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505125408.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11117-021-00829-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127279360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11117-021-00829-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lhaimer, Driss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the class of order L-weakly and order M-weakly compact operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we introduce and study new concepts of order L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. It is proved that if $$T:E \longrightarrow F$$ is an operator between two Banach lattices, then T is order M-weakly compact if and only if its adjoint $$T'$$ is order L-weakly compact. Also, we show that if its adjoint $$T'$$ is order M-weakly compact, then T is order L-weakly compact. Some related results are also obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-weakly compact operator M-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order L-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order M-weakly compact operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order continuous norm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouras, Khalid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moussa, Mohammed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">25(2021), 4 vom: 19. Apr., Seite 1569-1578</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1569-1578</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11117-021-00829-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">1569-1578</subfield></datafield></record></collection>
|
score |
7.40199 |