On Grünbaum Type Inequalities
Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross...
Ausführliche Beschreibung
Autor*in: |
Marín Sola, Francisco [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Mathematica Josephina, Inc. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of geometric analysis - Springer US, 1991, 31(2021), 10 vom: 16. März, Seite 9981-9995 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2021 ; number:10 ; day:16 ; month:03 ; pages:9981-9995 |
Links: |
---|
DOI / URN: |
10.1007/s12220-021-00635-y |
---|
Katalog-ID: |
OLC2127394151 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127394151 | ||
003 | DE-627 | ||
005 | 20230505130308.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s12220-021-00635-y |2 doi | |
035 | |a (DE-627)OLC2127394151 | ||
035 | |a (DE-He213)s12220-021-00635-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Marín Sola, Francisco |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Grünbaum Type Inequalities |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Mathematica Josephina, Inc. 2021 | ||
520 | |a Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. | ||
650 | 4 | |a Grünbaum’s inequality | |
650 | 4 | |a -Concave function | |
650 | 4 | |a Log-concave function | |
650 | 4 | |a Brunn’s concavity principle | |
650 | 4 | |a Sections of convex bodies | |
650 | 4 | |a Centroid | |
700 | 1 | |a Yepes Nicolás, Jesús |0 (orcid)0000-0001-9815-1736 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of geometric analysis |d Springer US, 1991 |g 31(2021), 10 vom: 16. März, Seite 9981-9995 |w (DE-627)131006398 |w (DE-600)1086949-9 |w (DE-576)028039211 |x 1050-6926 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2021 |g number:10 |g day:16 |g month:03 |g pages:9981-9995 |
856 | 4 | 1 | |u https://doi.org/10.1007/s12220-021-00635-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2409 | ||
951 | |a AR | ||
952 | |d 31 |j 2021 |e 10 |b 16 |c 03 |h 9981-9995 |
author_variant |
s f m sf sfm n j y nj njy |
---|---|
matchkey_str |
article:10506926:2021----::nrbutpieu |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s12220-021-00635-y doi (DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Marín Sola, Francisco verfasserin aut On Grünbaum Type Inequalities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2021 Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid Yepes Nicolás, Jesús (orcid)0000-0001-9815-1736 aut Enthalten in The journal of geometric analysis Springer US, 1991 31(2021), 10 vom: 16. März, Seite 9981-9995 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 https://doi.org/10.1007/s12220-021-00635-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 AR 31 2021 10 16 03 9981-9995 |
spelling |
10.1007/s12220-021-00635-y doi (DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Marín Sola, Francisco verfasserin aut On Grünbaum Type Inequalities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2021 Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid Yepes Nicolás, Jesús (orcid)0000-0001-9815-1736 aut Enthalten in The journal of geometric analysis Springer US, 1991 31(2021), 10 vom: 16. März, Seite 9981-9995 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 https://doi.org/10.1007/s12220-021-00635-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 AR 31 2021 10 16 03 9981-9995 |
allfields_unstemmed |
10.1007/s12220-021-00635-y doi (DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Marín Sola, Francisco verfasserin aut On Grünbaum Type Inequalities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2021 Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid Yepes Nicolás, Jesús (orcid)0000-0001-9815-1736 aut Enthalten in The journal of geometric analysis Springer US, 1991 31(2021), 10 vom: 16. März, Seite 9981-9995 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 https://doi.org/10.1007/s12220-021-00635-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 AR 31 2021 10 16 03 9981-9995 |
allfieldsGer |
10.1007/s12220-021-00635-y doi (DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Marín Sola, Francisco verfasserin aut On Grünbaum Type Inequalities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2021 Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid Yepes Nicolás, Jesús (orcid)0000-0001-9815-1736 aut Enthalten in The journal of geometric analysis Springer US, 1991 31(2021), 10 vom: 16. März, Seite 9981-9995 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 https://doi.org/10.1007/s12220-021-00635-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 AR 31 2021 10 16 03 9981-9995 |
allfieldsSound |
10.1007/s12220-021-00635-y doi (DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Marín Sola, Francisco verfasserin aut On Grünbaum Type Inequalities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Mathematica Josephina, Inc. 2021 Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid Yepes Nicolás, Jesús (orcid)0000-0001-9815-1736 aut Enthalten in The journal of geometric analysis Springer US, 1991 31(2021), 10 vom: 16. März, Seite 9981-9995 (DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 1050-6926 nnns volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 https://doi.org/10.1007/s12220-021-00635-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 AR 31 2021 10 16 03 9981-9995 |
language |
English |
source |
Enthalten in The journal of geometric analysis 31(2021), 10 vom: 16. März, Seite 9981-9995 volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 |
sourceStr |
Enthalten in The journal of geometric analysis 31(2021), 10 vom: 16. März, Seite 9981-9995 volume:31 year:2021 number:10 day:16 month:03 pages:9981-9995 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The journal of geometric analysis |
authorswithroles_txt_mv |
Marín Sola, Francisco @@aut@@ Yepes Nicolás, Jesús @@aut@@ |
publishDateDaySort_date |
2021-03-16T00:00:00Z |
hierarchy_top_id |
131006398 |
dewey-sort |
3510 |
id |
OLC2127394151 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127394151</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505130308.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12220-021-00635-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127394151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12220-021-00635-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marín Sola, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Grünbaum Type Inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mathematica Josephina, Inc. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grünbaum’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Concave function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log-concave function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brunn’s concavity principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sections of convex bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centroid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yepes Nicolás, Jesús</subfield><subfield code="0">(orcid)0000-0001-9815-1736</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of geometric analysis</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">31(2021), 10 vom: 16. März, Seite 9981-9995</subfield><subfield code="w">(DE-627)131006398</subfield><subfield code="w">(DE-600)1086949-9</subfield><subfield code="w">(DE-576)028039211</subfield><subfield code="x">1050-6926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">day:16</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:9981-9995</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12220-021-00635-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="b">16</subfield><subfield code="c">03</subfield><subfield code="h">9981-9995</subfield></datafield></record></collection>
|
author |
Marín Sola, Francisco |
spellingShingle |
Marín Sola, Francisco ddc 510 ssgn 17,1 misc Grünbaum’s inequality misc -Concave function misc Log-concave function misc Brunn’s concavity principle misc Sections of convex bodies misc Centroid On Grünbaum Type Inequalities |
authorStr |
Marín Sola, Francisco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131006398 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1050-6926 |
topic_title |
510 VZ 17,1 ssgn On Grünbaum Type Inequalities Grünbaum’s inequality -Concave function Log-concave function Brunn’s concavity principle Sections of convex bodies Centroid |
topic |
ddc 510 ssgn 17,1 misc Grünbaum’s inequality misc -Concave function misc Log-concave function misc Brunn’s concavity principle misc Sections of convex bodies misc Centroid |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Grünbaum’s inequality misc -Concave function misc Log-concave function misc Brunn’s concavity principle misc Sections of convex bodies misc Centroid |
topic_browse |
ddc 510 ssgn 17,1 misc Grünbaum’s inequality misc -Concave function misc Log-concave function misc Brunn’s concavity principle misc Sections of convex bodies misc Centroid |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of geometric analysis |
hierarchy_parent_id |
131006398 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The journal of geometric analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131006398 (DE-600)1086949-9 (DE-576)028039211 |
title |
On Grünbaum Type Inequalities |
ctrlnum |
(DE-627)OLC2127394151 (DE-He213)s12220-021-00635-y-p |
title_full |
On Grünbaum Type Inequalities |
author_sort |
Marín Sola, Francisco |
journal |
The journal of geometric analysis |
journalStr |
The journal of geometric analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
9981 |
author_browse |
Marín Sola, Francisco Yepes Nicolás, Jesús |
container_volume |
31 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Marín Sola, Francisco |
doi_str_mv |
10.1007/s12220-021-00635-y |
normlink |
(ORCID)0000-0001-9815-1736 |
normlink_prefix_str_mv |
(orcid)0000-0001-9815-1736 |
dewey-full |
510 |
title_sort |
on grünbaum type inequalities |
title_auth |
On Grünbaum Type Inequalities |
abstract |
Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. © Mathematica Josephina, Inc. 2021 |
abstractGer |
Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. © Mathematica Josephina, Inc. 2021 |
abstract_unstemmed |
Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality. © Mathematica Josephina, Inc. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2409 |
container_issue |
10 |
title_short |
On Grünbaum Type Inequalities |
url |
https://doi.org/10.1007/s12220-021-00635-y |
remote_bool |
false |
author2 |
Yepes Nicolás, Jesús |
author2Str |
Yepes Nicolás, Jesús |
ppnlink |
131006398 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12220-021-00635-y |
up_date |
2024-07-04T10:39:46.145Z |
_version_ |
1803644657884725248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127394151</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505130308.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12220-021-00635-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127394151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12220-021-00635-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marín Sola, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Grünbaum Type Inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mathematica Josephina, Inc. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given a compact set $$K\subset {\mathbb {R}}^n$$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $$\mathrm {vol}(K^{-})/\mathrm {vol}(K)$$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where $$K^{-}$$ denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum’s inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grünbaum’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Concave function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Log-concave function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brunn’s concavity principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sections of convex bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centroid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yepes Nicolás, Jesús</subfield><subfield code="0">(orcid)0000-0001-9815-1736</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of geometric analysis</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">31(2021), 10 vom: 16. März, Seite 9981-9995</subfield><subfield code="w">(DE-627)131006398</subfield><subfield code="w">(DE-600)1086949-9</subfield><subfield code="w">(DE-576)028039211</subfield><subfield code="x">1050-6926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">day:16</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:9981-9995</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12220-021-00635-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="b">16</subfield><subfield code="c">03</subfield><subfield code="h">9981-9995</subfield></datafield></record></collection>
|
score |
7.4009056 |