Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm
Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to ch...
Ausführliche Beschreibung
Autor*in: |
Tao, Liangyan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Group decision and negotiation - Springer Netherlands, 1992, 30(2021), 5 vom: 09. Juni, Seite 1085-1112 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2021 ; number:5 ; day:09 ; month:06 ; pages:1085-1112 |
Links: |
---|
DOI / URN: |
10.1007/s10726-021-09748-9 |
---|
Katalog-ID: |
OLC2127598563 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127598563 | ||
003 | DE-627 | ||
005 | 20230505131748.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10726-021-09748-9 |2 doi | |
035 | |a (DE-627)OLC2127598563 | ||
035 | |a (DE-He213)s10726-021-09748-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 150 |a 300 |a 650 |q VZ |
084 | |a 5,2 |a 3,4 |a 3,2 |2 ssgn | ||
100 | 1 | |a Tao, Liangyan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. | ||
650 | 4 | |a Group decision and negotiation | |
650 | 4 | |a Inverse GMCR | |
650 | 4 | |a Preference optimization | |
650 | 4 | |a Conflict Resolution | |
650 | 4 | |a Genetic Algorithm | |
650 | 4 | |a Graph Model for Conflict Resolution | |
700 | 1 | |a Su, Xuebi |4 aut | |
700 | 1 | |a Javed, Saad Ahmed |0 (orcid)0000-0002-7916-7537 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Group decision and negotiation |d Springer Netherlands, 1992 |g 30(2021), 5 vom: 09. Juni, Seite 1085-1112 |w (DE-627)17112684X |w (DE-600)1155213-X |w (DE-576)040094448 |x 0926-2644 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2021 |g number:5 |g day:09 |g month:06 |g pages:1085-1112 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10726-021-09748-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
951 | |a AR | ||
952 | |d 30 |j 2021 |e 5 |b 09 |c 06 |h 1085-1112 |
author_variant |
l t lt x s xs s a j sa saj |
---|---|
matchkey_str |
article:09262644:2021----::nespeeecotmztoiterpmdlocnlcrsltob |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10726-021-09748-9 doi (DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Tao, Liangyan verfasserin aut Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution Su, Xuebi aut Javed, Saad Ahmed (orcid)0000-0002-7916-7537 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2021), 5 vom: 09. Juni, Seite 1085-1112 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 https://doi.org/10.1007/s10726-021-09748-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2021 5 09 06 1085-1112 |
spelling |
10.1007/s10726-021-09748-9 doi (DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Tao, Liangyan verfasserin aut Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution Su, Xuebi aut Javed, Saad Ahmed (orcid)0000-0002-7916-7537 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2021), 5 vom: 09. Juni, Seite 1085-1112 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 https://doi.org/10.1007/s10726-021-09748-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2021 5 09 06 1085-1112 |
allfields_unstemmed |
10.1007/s10726-021-09748-9 doi (DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Tao, Liangyan verfasserin aut Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution Su, Xuebi aut Javed, Saad Ahmed (orcid)0000-0002-7916-7537 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2021), 5 vom: 09. Juni, Seite 1085-1112 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 https://doi.org/10.1007/s10726-021-09748-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2021 5 09 06 1085-1112 |
allfieldsGer |
10.1007/s10726-021-09748-9 doi (DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Tao, Liangyan verfasserin aut Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution Su, Xuebi aut Javed, Saad Ahmed (orcid)0000-0002-7916-7537 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2021), 5 vom: 09. Juni, Seite 1085-1112 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 https://doi.org/10.1007/s10726-021-09748-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2021 5 09 06 1085-1112 |
allfieldsSound |
10.1007/s10726-021-09748-9 doi (DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Tao, Liangyan verfasserin aut Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution Su, Xuebi aut Javed, Saad Ahmed (orcid)0000-0002-7916-7537 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2021), 5 vom: 09. Juni, Seite 1085-1112 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 https://doi.org/10.1007/s10726-021-09748-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2021 5 09 06 1085-1112 |
language |
English |
source |
Enthalten in Group decision and negotiation 30(2021), 5 vom: 09. Juni, Seite 1085-1112 volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 |
sourceStr |
Enthalten in Group decision and negotiation 30(2021), 5 vom: 09. Juni, Seite 1085-1112 volume:30 year:2021 number:5 day:09 month:06 pages:1085-1112 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution |
dewey-raw |
150 |
isfreeaccess_bool |
false |
container_title |
Group decision and negotiation |
authorswithroles_txt_mv |
Tao, Liangyan @@aut@@ Su, Xuebi @@aut@@ Javed, Saad Ahmed @@aut@@ |
publishDateDaySort_date |
2021-06-09T00:00:00Z |
hierarchy_top_id |
17112684X |
dewey-sort |
3150 |
id |
OLC2127598563 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127598563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505131748.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10726-021-09748-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127598563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10726-021-09748-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">300</subfield><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,2</subfield><subfield code="a">3,4</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Liangyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group decision and negotiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse GMCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preference optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conflict Resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph Model for Conflict Resolution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xuebi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Javed, Saad Ahmed</subfield><subfield code="0">(orcid)0000-0002-7916-7537</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Group decision and negotiation</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">30(2021), 5 vom: 09. Juni, Seite 1085-1112</subfield><subfield code="w">(DE-627)17112684X</subfield><subfield code="w">(DE-600)1155213-X</subfield><subfield code="w">(DE-576)040094448</subfield><subfield code="x">0926-2644</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:09</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1085-1112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10726-021-09748-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">09</subfield><subfield code="c">06</subfield><subfield code="h">1085-1112</subfield></datafield></record></collection>
|
author |
Tao, Liangyan |
spellingShingle |
Tao, Liangyan ddc 150 ssgn 5,2 misc Group decision and negotiation misc Inverse GMCR misc Preference optimization misc Conflict Resolution misc Genetic Algorithm misc Graph Model for Conflict Resolution Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
authorStr |
Tao, Liangyan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)17112684X |
format |
Article |
dewey-ones |
150 - Psychology 300 - Social sciences 650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-2644 |
topic_title |
150 300 650 VZ 5,2 3,4 3,2 ssgn Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm Group decision and negotiation Inverse GMCR Preference optimization Conflict Resolution Genetic Algorithm Graph Model for Conflict Resolution |
topic |
ddc 150 ssgn 5,2 misc Group decision and negotiation misc Inverse GMCR misc Preference optimization misc Conflict Resolution misc Genetic Algorithm misc Graph Model for Conflict Resolution |
topic_unstemmed |
ddc 150 ssgn 5,2 misc Group decision and negotiation misc Inverse GMCR misc Preference optimization misc Conflict Resolution misc Genetic Algorithm misc Graph Model for Conflict Resolution |
topic_browse |
ddc 150 ssgn 5,2 misc Group decision and negotiation misc Inverse GMCR misc Preference optimization misc Conflict Resolution misc Genetic Algorithm misc Graph Model for Conflict Resolution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Group decision and negotiation |
hierarchy_parent_id |
17112684X |
dewey-tens |
150 - Psychology 300 - Social sciences, sociology & anthropology 650 - Management & public relations |
hierarchy_top_title |
Group decision and negotiation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 |
title |
Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
ctrlnum |
(DE-627)OLC2127598563 (DE-He213)s10726-021-09748-9-p |
title_full |
Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
author_sort |
Tao, Liangyan |
journal |
Group decision and negotiation |
journalStr |
Group decision and negotiation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
100 - Philosophy & psychology 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1085 |
author_browse |
Tao, Liangyan Su, Xuebi Javed, Saad Ahmed |
container_volume |
30 |
class |
150 300 650 VZ 5,2 3,4 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Tao, Liangyan |
doi_str_mv |
10.1007/s10726-021-09748-9 |
normlink |
(ORCID)0000-0002-7916-7537 |
normlink_prefix_str_mv |
(orcid)0000-0002-7916-7537 |
dewey-full |
150 300 650 |
title_sort |
inverse preference optimization in the graph model for conflict resolution based on the genetic algorithm |
title_auth |
Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
abstract |
Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW |
container_issue |
5 |
title_short |
Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm |
url |
https://doi.org/10.1007/s10726-021-09748-9 |
remote_bool |
false |
author2 |
Su, Xuebi Javed, Saad Ahmed |
author2Str |
Su, Xuebi Javed, Saad Ahmed |
ppnlink |
17112684X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10726-021-09748-9 |
up_date |
2024-07-03T13:46:00.857Z |
_version_ |
1803565778448941056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127598563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505131748.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10726-021-09748-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127598563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10726-021-09748-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">300</subfield><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,2</subfield><subfield code="a">3,4</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Liangyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group decision and negotiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse GMCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preference optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conflict Resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph Model for Conflict Resolution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xuebi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Javed, Saad Ahmed</subfield><subfield code="0">(orcid)0000-0002-7916-7537</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Group decision and negotiation</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">30(2021), 5 vom: 09. Juni, Seite 1085-1112</subfield><subfield code="w">(DE-627)17112684X</subfield><subfield code="w">(DE-600)1155213-X</subfield><subfield code="w">(DE-576)040094448</subfield><subfield code="x">0926-2644</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:09</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1085-1112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10726-021-09748-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">09</subfield><subfield code="c">06</subfield><subfield code="h">1085-1112</subfield></datafield></record></collection>
|
score |
7.4021244 |