Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise
Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properti...
Ausführliche Beschreibung
Autor*in: |
Hong, Wei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Potential analysis - Springer Netherlands, 1992, 55(2020), 3 vom: 25. Juli, Seite 477-490 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2020 ; number:3 ; day:25 ; month:07 ; pages:477-490 |
Links: |
---|
DOI / URN: |
10.1007/s11118-020-09865-1 |
---|
Katalog-ID: |
OLC2127764005 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2127764005 | ||
003 | DE-627 | ||
005 | 20230505133010.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11118-020-09865-1 |2 doi | |
035 | |a (DE-627)OLC2127764005 | ||
035 | |a (DE-He213)s11118-020-09865-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Hong, Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2020 | ||
520 | |a Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. | ||
650 | 4 | |a Ergodicity | |
650 | 4 | |a Harnack inequality | |
650 | 4 | |a Leray- | |
650 | 4 | |a model | |
650 | 4 | |a asymptotically strong Feller property | |
700 | 1 | |a Li, Shihu |4 aut | |
700 | 1 | |a Liu, Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Potential analysis |d Springer Netherlands, 1992 |g 55(2020), 3 vom: 25. Juli, Seite 477-490 |w (DE-627)165647787 |w (DE-600)33485-6 |w (DE-576)032989911 |x 0926-2601 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2020 |g number:3 |g day:25 |g month:07 |g pages:477-490 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11118-020-09865-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 55 |j 2020 |e 3 |b 25 |c 07 |h 477-490 |
author_variant |
w h wh s l sl w l wl |
---|---|
matchkey_str |
article:09262601:2020----::smttcohraknqaiynegdctfrdeamdli |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11118-020-09865-1 doi (DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Hong, Wei verfasserin aut Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. Ergodicity Harnack inequality Leray- model asymptotically strong Feller property Li, Shihu aut Liu, Wei aut Enthalten in Potential analysis Springer Netherlands, 1992 55(2020), 3 vom: 25. Juli, Seite 477-490 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:55 year:2020 number:3 day:25 month:07 pages:477-490 https://doi.org/10.1007/s11118-020-09865-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 55 2020 3 25 07 477-490 |
spelling |
10.1007/s11118-020-09865-1 doi (DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Hong, Wei verfasserin aut Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. Ergodicity Harnack inequality Leray- model asymptotically strong Feller property Li, Shihu aut Liu, Wei aut Enthalten in Potential analysis Springer Netherlands, 1992 55(2020), 3 vom: 25. Juli, Seite 477-490 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:55 year:2020 number:3 day:25 month:07 pages:477-490 https://doi.org/10.1007/s11118-020-09865-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 55 2020 3 25 07 477-490 |
allfields_unstemmed |
10.1007/s11118-020-09865-1 doi (DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Hong, Wei verfasserin aut Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. Ergodicity Harnack inequality Leray- model asymptotically strong Feller property Li, Shihu aut Liu, Wei aut Enthalten in Potential analysis Springer Netherlands, 1992 55(2020), 3 vom: 25. Juli, Seite 477-490 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:55 year:2020 number:3 day:25 month:07 pages:477-490 https://doi.org/10.1007/s11118-020-09865-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 55 2020 3 25 07 477-490 |
allfieldsGer |
10.1007/s11118-020-09865-1 doi (DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Hong, Wei verfasserin aut Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. Ergodicity Harnack inequality Leray- model asymptotically strong Feller property Li, Shihu aut Liu, Wei aut Enthalten in Potential analysis Springer Netherlands, 1992 55(2020), 3 vom: 25. Juli, Seite 477-490 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:55 year:2020 number:3 day:25 month:07 pages:477-490 https://doi.org/10.1007/s11118-020-09865-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 55 2020 3 25 07 477-490 |
allfieldsSound |
10.1007/s11118-020-09865-1 doi (DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Hong, Wei verfasserin aut Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. Ergodicity Harnack inequality Leray- model asymptotically strong Feller property Li, Shihu aut Liu, Wei aut Enthalten in Potential analysis Springer Netherlands, 1992 55(2020), 3 vom: 25. Juli, Seite 477-490 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:55 year:2020 number:3 day:25 month:07 pages:477-490 https://doi.org/10.1007/s11118-020-09865-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 55 2020 3 25 07 477-490 |
language |
English |
source |
Enthalten in Potential analysis 55(2020), 3 vom: 25. Juli, Seite 477-490 volume:55 year:2020 number:3 day:25 month:07 pages:477-490 |
sourceStr |
Enthalten in Potential analysis 55(2020), 3 vom: 25. Juli, Seite 477-490 volume:55 year:2020 number:3 day:25 month:07 pages:477-490 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ergodicity Harnack inequality Leray- model asymptotically strong Feller property |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Potential analysis |
authorswithroles_txt_mv |
Hong, Wei @@aut@@ Li, Shihu @@aut@@ Liu, Wei @@aut@@ |
publishDateDaySort_date |
2020-07-25T00:00:00Z |
hierarchy_top_id |
165647787 |
dewey-sort |
3510 |
id |
OLC2127764005 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127764005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505133010.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-020-09865-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127764005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-020-09865-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harnack inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leray-</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically strong Feller property</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shihu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">55(2020), 3 vom: 25. Juli, Seite 477-490</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:477-490</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-020-09865-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">07</subfield><subfield code="h">477-490</subfield></datafield></record></collection>
|
author |
Hong, Wei |
spellingShingle |
Hong, Wei ddc 510 ssgn 17,1 misc Ergodicity misc Harnack inequality misc Leray- misc model misc asymptotically strong Feller property Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
authorStr |
Hong, Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165647787 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-2601 |
topic_title |
510 VZ 17,1 ssgn Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise Ergodicity Harnack inequality Leray- model asymptotically strong Feller property |
topic |
ddc 510 ssgn 17,1 misc Ergodicity misc Harnack inequality misc Leray- misc model misc asymptotically strong Feller property |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Ergodicity misc Harnack inequality misc Leray- misc model misc asymptotically strong Feller property |
topic_browse |
ddc 510 ssgn 17,1 misc Ergodicity misc Harnack inequality misc Leray- misc model misc asymptotically strong Feller property |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Potential analysis |
hierarchy_parent_id |
165647787 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Potential analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 |
title |
Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
ctrlnum |
(DE-627)OLC2127764005 (DE-He213)s11118-020-09865-1-p |
title_full |
Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
author_sort |
Hong, Wei |
journal |
Potential analysis |
journalStr |
Potential analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
477 |
author_browse |
Hong, Wei Li, Shihu Liu, Wei |
container_volume |
55 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Hong, Wei |
doi_str_mv |
10.1007/s11118-020-09865-1 |
dewey-full |
510 |
title_sort |
asymptotic log-harnack inequality and ergodicity for 3d leray-α model with degenerate type noise |
title_auth |
Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
abstract |
Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. © Springer Nature B.V. 2020 |
abstractGer |
Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. © Springer Nature B.V. 2020 |
abstract_unstemmed |
Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model. © Springer Nature B.V. 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
3 |
title_short |
Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise |
url |
https://doi.org/10.1007/s11118-020-09865-1 |
remote_bool |
false |
author2 |
Li, Shihu Liu, Wei |
author2Str |
Li, Shihu Liu, Wei |
ppnlink |
165647787 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11118-020-09865-1 |
up_date |
2024-07-03T14:43:56.317Z |
_version_ |
1803569422733934592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2127764005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505133010.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-020-09865-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2127764005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-020-09865-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Log-Harnack Inequality and Ergodicity for 3D Leray-α Model with Degenerate Type Noise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The asymptotic log-Harnack inequality is proved for Leray-α model with degenerate type noise using the asymptotic coupling method. In particular, we don’t impose any lower bound assumption for the viscosity constant. As applications, we also derive ergodicity and further asymptotic properties for stochastic 3D Leray-α model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harnack inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leray-</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically strong Feller property</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shihu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">55(2020), 3 vom: 25. Juli, Seite 477-490</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:477-490</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-020-09865-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">07</subfield><subfield code="h">477-490</subfield></datafield></record></collection>
|
score |
7.4007235 |