Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels
Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conduct...
Ausführliche Beschreibung
Autor*in: |
Xu, Liang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Heat and mass transfer - Springer Berlin Heidelberg, 1968, 58(2021), 1 vom: 17. Juni, Seite 41-64 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2021 ; number:1 ; day:17 ; month:06 ; pages:41-64 |
Links: |
---|
DOI / URN: |
10.1007/s00231-021-03100-2 |
---|
Katalog-ID: |
OLC2128966086 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2128966086 | ||
003 | DE-627 | ||
005 | 20230505190023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00231-021-03100-2 |2 doi | |
035 | |a (DE-627)OLC2128966086 | ||
035 | |a (DE-He213)s00231-021-03100-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a ELIB31 |q VZ |2 rvk | ||
084 | |a ELIB41 |q VZ |2 rvk | ||
084 | |a 58.13$jThermische Verfahrenstechnik |2 bkl | ||
084 | |a 50.38$jTechnische Thermodynamik |2 bkl | ||
100 | 1 | |a Xu, Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. | ||
650 | 4 | |a Kagome lattice structure | |
650 | 4 | |a Flow and heat transfer | |
650 | 4 | |a Rectangular channel | |
650 | 4 | |a Staggered arrangement | |
650 | 4 | |a Correlation fitting | |
700 | 1 | |a Chen, Hanghang |4 aut | |
700 | 1 | |a Xi, Lei |0 (orcid)0000-0001-7076-3124 |4 aut | |
700 | 1 | |a Xiong, Yanhong |4 aut | |
700 | 1 | |a Gao, Jianmin |4 aut | |
700 | 1 | |a Li, Yunlong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Heat and mass transfer |d Springer Berlin Heidelberg, 1968 |g 58(2021), 1 vom: 17. Juni, Seite 41-64 |h Online-Ressource |w (DE-627)27012635X |w (DE-600)1476367-9 |w (DE-576)078128927 |x 1432-1181 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2021 |g number:1 |g day:17 |g month:06 |g pages:41-64 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00231-021-03100-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a ELIB31 |
936 | r | v | |a ELIB41 |
936 | b | k | |a 58.13$jThermische Verfahrenstechnik |q VZ |0 181570548 |0 (DE-625)181570548 |
936 | b | k | |a 50.38$jTechnische Thermodynamik |q VZ |0 106420534 |0 (DE-625)106420534 |
951 | |a AR | ||
952 | |d 58 |j 2021 |e 1 |b 17 |c 06 |h 41-64 |
author_variant |
l x lx h c hc l x lx y x yx j g jg y l yl |
---|---|
matchkey_str |
article:14321181:2021----::lwnhatasecaatrsisfsagrdraokgmltietut |
hierarchy_sort_str |
2021 |
bklnumber |
58.13$jThermische Verfahrenstechnik 50.38$jTechnische Thermodynamik |
publishDate |
2021 |
allfields |
10.1007/s00231-021-03100-2 doi (DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e DE-627 ger DE-627 rakwb eng 530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Xu, Liang verfasserin aut Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting Chen, Hanghang aut Xi, Lei (orcid)0000-0001-7076-3124 aut Xiong, Yanhong aut Gao, Jianmin aut Li, Yunlong aut Enthalten in Heat and mass transfer Springer Berlin Heidelberg, 1968 58(2021), 1 vom: 17. Juni, Seite 41-64 Online-Ressource (DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 1432-1181 nnns volume:58 year:2021 number:1 day:17 month:06 pages:41-64 https://dx.doi.org/10.1007/s00231-021-03100-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 ELIB31 ELIB41 58.13$jThermische Verfahrenstechnik VZ 181570548 (DE-625)181570548 50.38$jTechnische Thermodynamik VZ 106420534 (DE-625)106420534 AR 58 2021 1 17 06 41-64 |
spelling |
10.1007/s00231-021-03100-2 doi (DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e DE-627 ger DE-627 rakwb eng 530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Xu, Liang verfasserin aut Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting Chen, Hanghang aut Xi, Lei (orcid)0000-0001-7076-3124 aut Xiong, Yanhong aut Gao, Jianmin aut Li, Yunlong aut Enthalten in Heat and mass transfer Springer Berlin Heidelberg, 1968 58(2021), 1 vom: 17. Juni, Seite 41-64 Online-Ressource (DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 1432-1181 nnns volume:58 year:2021 number:1 day:17 month:06 pages:41-64 https://dx.doi.org/10.1007/s00231-021-03100-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 ELIB31 ELIB41 58.13$jThermische Verfahrenstechnik VZ 181570548 (DE-625)181570548 50.38$jTechnische Thermodynamik VZ 106420534 (DE-625)106420534 AR 58 2021 1 17 06 41-64 |
allfields_unstemmed |
10.1007/s00231-021-03100-2 doi (DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e DE-627 ger DE-627 rakwb eng 530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Xu, Liang verfasserin aut Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting Chen, Hanghang aut Xi, Lei (orcid)0000-0001-7076-3124 aut Xiong, Yanhong aut Gao, Jianmin aut Li, Yunlong aut Enthalten in Heat and mass transfer Springer Berlin Heidelberg, 1968 58(2021), 1 vom: 17. Juni, Seite 41-64 Online-Ressource (DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 1432-1181 nnns volume:58 year:2021 number:1 day:17 month:06 pages:41-64 https://dx.doi.org/10.1007/s00231-021-03100-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 ELIB31 ELIB41 58.13$jThermische Verfahrenstechnik VZ 181570548 (DE-625)181570548 50.38$jTechnische Thermodynamik VZ 106420534 (DE-625)106420534 AR 58 2021 1 17 06 41-64 |
allfieldsGer |
10.1007/s00231-021-03100-2 doi (DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e DE-627 ger DE-627 rakwb eng 530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Xu, Liang verfasserin aut Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting Chen, Hanghang aut Xi, Lei (orcid)0000-0001-7076-3124 aut Xiong, Yanhong aut Gao, Jianmin aut Li, Yunlong aut Enthalten in Heat and mass transfer Springer Berlin Heidelberg, 1968 58(2021), 1 vom: 17. Juni, Seite 41-64 Online-Ressource (DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 1432-1181 nnns volume:58 year:2021 number:1 day:17 month:06 pages:41-64 https://dx.doi.org/10.1007/s00231-021-03100-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 ELIB31 ELIB41 58.13$jThermische Verfahrenstechnik VZ 181570548 (DE-625)181570548 50.38$jTechnische Thermodynamik VZ 106420534 (DE-625)106420534 AR 58 2021 1 17 06 41-64 |
allfieldsSound |
10.1007/s00231-021-03100-2 doi (DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e DE-627 ger DE-627 rakwb eng 530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Xu, Liang verfasserin aut Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting Chen, Hanghang aut Xi, Lei (orcid)0000-0001-7076-3124 aut Xiong, Yanhong aut Gao, Jianmin aut Li, Yunlong aut Enthalten in Heat and mass transfer Springer Berlin Heidelberg, 1968 58(2021), 1 vom: 17. Juni, Seite 41-64 Online-Ressource (DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 1432-1181 nnns volume:58 year:2021 number:1 day:17 month:06 pages:41-64 https://dx.doi.org/10.1007/s00231-021-03100-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 ELIB31 ELIB41 58.13$jThermische Verfahrenstechnik VZ 181570548 (DE-625)181570548 50.38$jTechnische Thermodynamik VZ 106420534 (DE-625)106420534 AR 58 2021 1 17 06 41-64 |
language |
English |
source |
Enthalten in Heat and mass transfer 58(2021), 1 vom: 17. Juni, Seite 41-64 volume:58 year:2021 number:1 day:17 month:06 pages:41-64 |
sourceStr |
Enthalten in Heat and mass transfer 58(2021), 1 vom: 17. Juni, Seite 41-64 volume:58 year:2021 number:1 day:17 month:06 pages:41-64 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Heat and mass transfer |
authorswithroles_txt_mv |
Xu, Liang @@aut@@ Chen, Hanghang @@aut@@ Xi, Lei @@aut@@ Xiong, Yanhong @@aut@@ Gao, Jianmin @@aut@@ Li, Yunlong @@aut@@ |
publishDateDaySort_date |
2021-06-17T00:00:00Z |
hierarchy_top_id |
27012635X |
dewey-sort |
3530 |
id |
OLC2128966086 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2128966086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505190023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00231-021-03100-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2128966086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00231-021-03100-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELIB31</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELIB41</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13$jThermische Verfahrenstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38$jTechnische Thermodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kagome lattice structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow and heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staggered arrangement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation fitting</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hanghang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lei</subfield><subfield code="0">(orcid)0000-0001-7076-3124</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yanhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jianmin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Heat and mass transfer</subfield><subfield code="d">Springer Berlin Heidelberg, 1968</subfield><subfield code="g">58(2021), 1 vom: 17. Juni, Seite 41-64</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)27012635X</subfield><subfield code="w">(DE-600)1476367-9</subfield><subfield code="w">(DE-576)078128927</subfield><subfield code="x">1432-1181</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:41-64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00231-021-03100-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ELIB31</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ELIB41</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13$jThermische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">181570548</subfield><subfield code="0">(DE-625)181570548</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38$jTechnische Thermodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106420534</subfield><subfield code="0">(DE-625)106420534</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield><subfield code="h">41-64</subfield></datafield></record></collection>
|
author |
Xu, Liang |
spellingShingle |
Xu, Liang ddc 530 rvk ELIB31 rvk ELIB41 bkl 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik misc Kagome lattice structure misc Flow and heat transfer misc Rectangular channel misc Staggered arrangement misc Correlation fitting Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
authorStr |
Xu, Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)27012635X |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1181 |
topic_title |
530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels Kagome lattice structure Flow and heat transfer Rectangular channel Staggered arrangement Correlation fitting |
topic |
ddc 530 rvk ELIB31 rvk ELIB41 bkl 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik misc Kagome lattice structure misc Flow and heat transfer misc Rectangular channel misc Staggered arrangement misc Correlation fitting |
topic_unstemmed |
ddc 530 rvk ELIB31 rvk ELIB41 bkl 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik misc Kagome lattice structure misc Flow and heat transfer misc Rectangular channel misc Staggered arrangement misc Correlation fitting |
topic_browse |
ddc 530 rvk ELIB31 rvk ELIB41 bkl 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik misc Kagome lattice structure misc Flow and heat transfer misc Rectangular channel misc Staggered arrangement misc Correlation fitting |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Heat and mass transfer |
hierarchy_parent_id |
27012635X |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)27012635X (DE-600)1476367-9 (DE-576)078128927 |
title |
Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
ctrlnum |
(DE-627)OLC2128966086 (DE-He213)s00231-021-03100-2-e |
title_full |
Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
author_sort |
Xu, Liang |
journal |
Heat and mass transfer |
journalStr |
Heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
41 |
author_browse |
Xu, Liang Chen, Hanghang Xi, Lei Xiong, Yanhong Gao, Jianmin Li, Yunlong |
container_volume |
58 |
class |
530 620 VZ ELIB31 VZ rvk ELIB41 VZ rvk 58.13$jThermische Verfahrenstechnik bkl 50.38$jTechnische Thermodynamik bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Liang |
doi_str_mv |
10.1007/s00231-021-03100-2 |
normlink |
(ORCID)0000-0001-7076-3124 181570548 106420534 |
normlink_prefix_str_mv |
(orcid)0000-0001-7076-3124 181570548 (DE-625)181570548 106420534 (DE-625)106420534 |
dewey-full |
530 620 |
title_sort |
flow and heat transfer characteristics of a staggered array of kagome lattice structures in rectangular channels |
title_auth |
Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
abstract |
Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels |
url |
https://dx.doi.org/10.1007/s00231-021-03100-2 |
remote_bool |
true |
author2 |
Chen, Hanghang Xi, Lei Xiong, Yanhong Gao, Jianmin Li, Yunlong |
author2Str |
Chen, Hanghang Xi, Lei Xiong, Yanhong Gao, Jianmin Li, Yunlong |
ppnlink |
27012635X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00231-021-03100-2 |
up_date |
2024-07-03T22:32:05.498Z |
_version_ |
1803598876376039424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2128966086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505190023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00231-021-03100-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2128966086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00231-021-03100-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELIB31</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELIB41</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.13$jThermische Verfahrenstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38$jTechnische Thermodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, Kagome lattice structure (KLS) produced by 3D printer is used as a turbulator for a typical rectangular internal cooling channel at the trailing edge of turbine blade. The friction factor and bottom wall heat transfer coefficient of the channel filled with low thermal conductivity ABS plastic KLS are experimentally and numerically analyzed by changing the column diameter d/H = 0.1–0.2, the inclination angle α = 45°-60° and included angle β = 120°-150° under the Reynolds number range of 5000–30,000. The fitting correlations of these parameters with the channel friction factors and the average Nusselt number of working surface are obtained. The results show that when Reynolds number increases from 5000 to 30,000, the vortex range behind type II column increases obviously, the local heat transfer effect is obviously improved and the comprehensive impact factor F increases by 180%. When d/H increases from 0.1 to 0.2, the area of stagnation vortex after type I column expands, the heat transfer effect improves significantly, the friction factor increases by 60.9%, the average Nusselt number of channel wall increases by 32.2%, and the F increases by 16%. With the increase of α and β, the heat transfer effect has no obvious change, but the friction factor in the channel is reduced with different degrees. The high heat transfer area is mainly concentrated near the surface of the column. In the obtained fitting correlation, the maximum error of the average Nusselt number is 9.3%, and the maximum error of friction factor is 24%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kagome lattice structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow and heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staggered arrangement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation fitting</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hanghang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lei</subfield><subfield code="0">(orcid)0000-0001-7076-3124</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yanhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jianmin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Heat and mass transfer</subfield><subfield code="d">Springer Berlin Heidelberg, 1968</subfield><subfield code="g">58(2021), 1 vom: 17. Juni, Seite 41-64</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)27012635X</subfield><subfield code="w">(DE-600)1476367-9</subfield><subfield code="w">(DE-576)078128927</subfield><subfield code="x">1432-1181</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:41-64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00231-021-03100-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ELIB31</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">ELIB41</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.13$jThermische Verfahrenstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">181570548</subfield><subfield code="0">(DE-625)181570548</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38$jTechnische Thermodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106420534</subfield><subfield code="0">(DE-625)106420534</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">06</subfield><subfield code="h">41-64</subfield></datafield></record></collection>
|
score |
7.401971 |