Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil
Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evac...
Ausführliche Beschreibung
Autor*in: |
Babak, V. N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical foundations of chemical engineering - Pleiades Publishing, 1967, 56(2022), 3 vom: Juni, Seite 279-295 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2022 ; number:3 ; month:06 ; pages:279-295 |
Links: |
---|
DOI / URN: |
10.1134/S0040579522030034 |
---|
Katalog-ID: |
OLC2131201893 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2131201893 | ||
003 | DE-627 | ||
005 | 20230506034649.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0040579522030034 |2 doi | |
035 | |a (DE-627)OLC2131201893 | ||
035 | |a (DE-He213)S0040579522030034-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Babak, V. N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. | ||
520 | |a Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. | ||
700 | 1 | |a Didenko, L. P. |4 aut | |
700 | 1 | |a Sementsova, L. A. |4 aut | |
700 | 1 | |a Kvurt, Yu. P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical foundations of chemical engineering |d Pleiades Publishing, 1967 |g 56(2022), 3 vom: Juni, Seite 279-295 |w (DE-627)129601438 |w (DE-600)241412-0 |w (DE-576)015095061 |x 0040-5795 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2022 |g number:3 |g month:06 |g pages:279-295 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0040579522030034 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
951 | |a AR | ||
952 | |d 56 |j 2022 |e 3 |c 06 |h 279-295 |
author_variant |
v n b vn vnb l p d lp lpd l a s la las y p k yp ypk |
---|---|
matchkey_str |
article:00405795:2022----::piiainftarfrigfehniayrgnitrnmmrnmdlwtaikla |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1134/S0040579522030034 doi (DE-627)OLC2131201893 (DE-He213)S0040579522030034-p DE-627 ger DE-627 rakwb eng 660 VZ Babak, V. N. verfasserin aut Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. Didenko, L. P. aut Sementsova, L. A. aut Kvurt, Yu. P. aut Enthalten in Theoretical foundations of chemical engineering Pleiades Publishing, 1967 56(2022), 3 vom: Juni, Seite 279-295 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:56 year:2022 number:3 month:06 pages:279-295 https://doi.org/10.1134/S0040579522030034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE AR 56 2022 3 06 279-295 |
spelling |
10.1134/S0040579522030034 doi (DE-627)OLC2131201893 (DE-He213)S0040579522030034-p DE-627 ger DE-627 rakwb eng 660 VZ Babak, V. N. verfasserin aut Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. Didenko, L. P. aut Sementsova, L. A. aut Kvurt, Yu. P. aut Enthalten in Theoretical foundations of chemical engineering Pleiades Publishing, 1967 56(2022), 3 vom: Juni, Seite 279-295 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:56 year:2022 number:3 month:06 pages:279-295 https://doi.org/10.1134/S0040579522030034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE AR 56 2022 3 06 279-295 |
allfields_unstemmed |
10.1134/S0040579522030034 doi (DE-627)OLC2131201893 (DE-He213)S0040579522030034-p DE-627 ger DE-627 rakwb eng 660 VZ Babak, V. N. verfasserin aut Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. Didenko, L. P. aut Sementsova, L. A. aut Kvurt, Yu. P. aut Enthalten in Theoretical foundations of chemical engineering Pleiades Publishing, 1967 56(2022), 3 vom: Juni, Seite 279-295 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:56 year:2022 number:3 month:06 pages:279-295 https://doi.org/10.1134/S0040579522030034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE AR 56 2022 3 06 279-295 |
allfieldsGer |
10.1134/S0040579522030034 doi (DE-627)OLC2131201893 (DE-He213)S0040579522030034-p DE-627 ger DE-627 rakwb eng 660 VZ Babak, V. N. verfasserin aut Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. Didenko, L. P. aut Sementsova, L. A. aut Kvurt, Yu. P. aut Enthalten in Theoretical foundations of chemical engineering Pleiades Publishing, 1967 56(2022), 3 vom: Juni, Seite 279-295 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:56 year:2022 number:3 month:06 pages:279-295 https://doi.org/10.1134/S0040579522030034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE AR 56 2022 3 06 279-295 |
allfieldsSound |
10.1134/S0040579522030034 doi (DE-627)OLC2131201893 (DE-He213)S0040579522030034-p DE-627 ger DE-627 rakwb eng 660 VZ Babak, V. N. verfasserin aut Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. Didenko, L. P. aut Sementsova, L. A. aut Kvurt, Yu. P. aut Enthalten in Theoretical foundations of chemical engineering Pleiades Publishing, 1967 56(2022), 3 vom: Juni, Seite 279-295 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:56 year:2022 number:3 month:06 pages:279-295 https://doi.org/10.1134/S0040579522030034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE AR 56 2022 3 06 279-295 |
language |
English |
source |
Enthalten in Theoretical foundations of chemical engineering 56(2022), 3 vom: Juni, Seite 279-295 volume:56 year:2022 number:3 month:06 pages:279-295 |
sourceStr |
Enthalten in Theoretical foundations of chemical engineering 56(2022), 3 vom: Juni, Seite 279-295 volume:56 year:2022 number:3 month:06 pages:279-295 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Theoretical foundations of chemical engineering |
authorswithroles_txt_mv |
Babak, V. N. @@aut@@ Didenko, L. P. @@aut@@ Sementsova, L. A. @@aut@@ Kvurt, Yu. P. @@aut@@ |
publishDateDaySort_date |
2022-06-01T00:00:00Z |
hierarchy_top_id |
129601438 |
dewey-sort |
3660 |
id |
OLC2131201893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2131201893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506034649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0040579522030034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2131201893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0040579522030034-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babak, V. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Didenko, L. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sementsova, L. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kvurt, Yu. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Pleiades Publishing, 1967</subfield><subfield code="g">56(2022), 3 vom: Juni, Seite 279-295</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:279-295</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0040579522030034</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">279-295</subfield></datafield></record></collection>
|
author |
Babak, V. N. |
spellingShingle |
Babak, V. N. ddc 660 Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
authorStr |
Babak, V. N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601438 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5795 |
topic_title |
660 VZ Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
topic |
ddc 660 |
topic_unstemmed |
ddc 660 |
topic_browse |
ddc 660 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical foundations of chemical engineering |
hierarchy_parent_id |
129601438 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Theoretical foundations of chemical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 |
title |
Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
ctrlnum |
(DE-627)OLC2131201893 (DE-He213)S0040579522030034-p |
title_full |
Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
author_sort |
Babak, V. N. |
journal |
Theoretical foundations of chemical engineering |
journalStr |
Theoretical foundations of chemical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
279 |
author_browse |
Babak, V. N. Didenko, L. P. Sementsova, L. A. Kvurt, Yu. P. |
container_volume |
56 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Babak, V. N. |
doi_str_mv |
10.1134/S0040579522030034 |
dewey-full |
660 |
title_sort |
optimization of steam reforming of methane in a hydrogen-filtering membrane module with a nickel catalyst and a palladium-alloy foil |
title_auth |
Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
abstract |
Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. |
abstractGer |
Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. |
abstract_unstemmed |
Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows. © Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE |
container_issue |
3 |
title_short |
Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil |
url |
https://doi.org/10.1134/S0040579522030034 |
remote_bool |
false |
author2 |
Didenko, L. P. Sementsova, L. A. Kvurt, Yu. P. |
author2Str |
Didenko, L. P. Sementsova, L. A. Kvurt, Yu. P. |
ppnlink |
129601438 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0040579522030034 |
up_date |
2024-07-04T08:07:30.306Z |
_version_ |
1803635078259015680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2131201893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506034649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0040579522030034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2131201893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0040579522030034-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babak, V. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Steam Reforming of Methane in a Hydrogen-Filtering Membrane Module with a Nickel Catalyst and a Palladium-Alloy Foil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2022. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2022, Vol. 56, No. 3, pp. 279–295. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2022, Vol. 56, No. 3, pp. 282–299.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract— A model is proposed for steam reforming of methane in a catalytic reactor, the working section of which includes two cylindrical chambers separated by a palladium foil membrane of the Pd, Pd–23% Ag, Pd–6% Ru, Pd–10% Ru, Pd–6% In–0.5% Ru, and Pd–6% In compositions. The upper chamber is evacuated and the atmospheric pressure is maintained in the lower chamber. Upon uniform feed of raw materials to the lower chamber, the problems are reduced to determination of the $ CH_{4} $, $ H_{2} $O, $ CO_{2} $, CO, and $ H_{2} $ flows from the solution of a system of first-order nonlinear ordinary differential equations. The 100% conversion of methane is achieved only when the ratio of water steam and methane input flows is more than two. Calculations are performed in the temperature range 700 $$ < T < $$ 1000 K at the ratio of steam/methane input flows belonging to this range [2, 10]. The optimum values of input flows of raw materials, at which the yield of hydrogen and the conversion of methane reach 100%, are determined. At optimum flows and specified temperature, the maximum hydrogen flow through the membrane is observed at the minimum permissible ratios of steam and methane input flows.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Didenko, L. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sementsova, L. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kvurt, Yu. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Pleiades Publishing, 1967</subfield><subfield code="g">56(2022), 3 vom: Juni, Seite 279-295</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:279-295</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0040579522030034</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">279-295</subfield></datafield></record></collection>
|
score |
7.4000053 |