Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time
Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amoun...
Ausführliche Beschreibung
Autor*in: |
Moiseeva, S. P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Automation and remote control - Pleiades Publishing, 1957, 83(2022), 8 vom: Aug., Seite 1213-1227 |
---|---|
Übergeordnetes Werk: |
volume:83 ; year:2022 ; number:8 ; month:08 ; pages:1213-1227 |
Links: |
---|
DOI / URN: |
10.1134/S0005117922080057 |
---|
Katalog-ID: |
OLC2132057818 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2132057818 | ||
003 | DE-627 | ||
005 | 20230506064930.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0005117922080057 |2 doi | |
035 | |a (DE-627)OLC2132057818 | ||
035 | |a (DE-He213)S0005117922080057-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 620 |q VZ |
100 | 1 | |a Moiseeva, S. P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2022 | ||
520 | |a Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. | ||
650 | 4 | |a infinite-server heterogeneous queuing system | |
650 | 4 | |a resource system | |
650 | 4 | |a parallel queuing | |
650 | 4 | |a Markov modulated Poisson flow | |
650 | 4 | |a asymptotic analysis | |
700 | 1 | |a Bushkova, T. V. |4 aut | |
700 | 1 | |a Pankratova, E. V. |4 aut | |
700 | 1 | |a Farkhadov, M. P. |4 aut | |
700 | 1 | |a Imomov, A. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Automation and remote control |d Pleiades Publishing, 1957 |g 83(2022), 8 vom: Aug., Seite 1213-1227 |w (DE-627)129603481 |w (DE-600)241725-X |w (DE-576)015097315 |x 0005-1179 |7 nnns |
773 | 1 | 8 | |g volume:83 |g year:2022 |g number:8 |g month:08 |g pages:1213-1227 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0005117922080057 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 83 |j 2022 |e 8 |c 08 |h 1213-1227 |
author_variant |
s p m sp spm t v b tv tvb e v p ev evp m p f mp mpf a a i aa aai |
---|---|
matchkey_str |
article:00051179:2022----::smttcnlssfeoreeeoeeuqmtrmp2ahm2uahmiifyneeu |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1134/S0005117922080057 doi (DE-627)OLC2132057818 (DE-He213)S0005117922080057-p DE-627 ger DE-627 rakwb eng 000 620 VZ Moiseeva, S. P. verfasserin aut Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022 Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis Bushkova, T. V. aut Pankratova, E. V. aut Farkhadov, M. P. aut Imomov, A. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 83(2022), 8 vom: Aug., Seite 1213-1227 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:83 year:2022 number:8 month:08 pages:1213-1227 https://doi.org/10.1134/S0005117922080057 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 83 2022 8 08 1213-1227 |
spelling |
10.1134/S0005117922080057 doi (DE-627)OLC2132057818 (DE-He213)S0005117922080057-p DE-627 ger DE-627 rakwb eng 000 620 VZ Moiseeva, S. P. verfasserin aut Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022 Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis Bushkova, T. V. aut Pankratova, E. V. aut Farkhadov, M. P. aut Imomov, A. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 83(2022), 8 vom: Aug., Seite 1213-1227 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:83 year:2022 number:8 month:08 pages:1213-1227 https://doi.org/10.1134/S0005117922080057 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 83 2022 8 08 1213-1227 |
allfields_unstemmed |
10.1134/S0005117922080057 doi (DE-627)OLC2132057818 (DE-He213)S0005117922080057-p DE-627 ger DE-627 rakwb eng 000 620 VZ Moiseeva, S. P. verfasserin aut Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022 Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis Bushkova, T. V. aut Pankratova, E. V. aut Farkhadov, M. P. aut Imomov, A. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 83(2022), 8 vom: Aug., Seite 1213-1227 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:83 year:2022 number:8 month:08 pages:1213-1227 https://doi.org/10.1134/S0005117922080057 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 83 2022 8 08 1213-1227 |
allfieldsGer |
10.1134/S0005117922080057 doi (DE-627)OLC2132057818 (DE-He213)S0005117922080057-p DE-627 ger DE-627 rakwb eng 000 620 VZ Moiseeva, S. P. verfasserin aut Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022 Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis Bushkova, T. V. aut Pankratova, E. V. aut Farkhadov, M. P. aut Imomov, A. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 83(2022), 8 vom: Aug., Seite 1213-1227 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:83 year:2022 number:8 month:08 pages:1213-1227 https://doi.org/10.1134/S0005117922080057 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 83 2022 8 08 1213-1227 |
allfieldsSound |
10.1134/S0005117922080057 doi (DE-627)OLC2132057818 (DE-He213)S0005117922080057-p DE-627 ger DE-627 rakwb eng 000 620 VZ Moiseeva, S. P. verfasserin aut Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2022 Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis Bushkova, T. V. aut Pankratova, E. V. aut Farkhadov, M. P. aut Imomov, A. A. aut Enthalten in Automation and remote control Pleiades Publishing, 1957 83(2022), 8 vom: Aug., Seite 1213-1227 (DE-627)129603481 (DE-600)241725-X (DE-576)015097315 0005-1179 nnns volume:83 year:2022 number:8 month:08 pages:1213-1227 https://doi.org/10.1134/S0005117922080057 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 83 2022 8 08 1213-1227 |
language |
English |
source |
Enthalten in Automation and remote control 83(2022), 8 vom: Aug., Seite 1213-1227 volume:83 year:2022 number:8 month:08 pages:1213-1227 |
sourceStr |
Enthalten in Automation and remote control 83(2022), 8 vom: Aug., Seite 1213-1227 volume:83 year:2022 number:8 month:08 pages:1213-1227 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Automation and remote control |
authorswithroles_txt_mv |
Moiseeva, S. P. @@aut@@ Bushkova, T. V. @@aut@@ Pankratova, E. V. @@aut@@ Farkhadov, M. P. @@aut@@ Imomov, A. A. @@aut@@ |
publishDateDaySort_date |
2022-08-01T00:00:00Z |
hierarchy_top_id |
129603481 |
dewey-sort |
0 |
id |
OLC2132057818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2132057818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506064930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0005117922080057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2132057818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0005117922080057-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moiseeva, S. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infinite-server heterogeneous queuing system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resource system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel queuing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov modulated Poisson flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bushkova, T. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pankratova, E. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farkhadov, M. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imomov, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Pleiades Publishing, 1957</subfield><subfield code="g">83(2022), 8 vom: Aug., Seite 1213-1227</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1213-1227</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0005117922080057</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1213-1227</subfield></datafield></record></collection>
|
author |
Moiseeva, S. P. |
spellingShingle |
Moiseeva, S. P. ddc 000 misc infinite-server heterogeneous queuing system misc resource system misc parallel queuing misc Markov modulated Poisson flow misc asymptotic analysis Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
authorStr |
Moiseeva, S. P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129603481 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0005-1179 |
topic_title |
000 620 VZ Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time infinite-server heterogeneous queuing system resource system parallel queuing Markov modulated Poisson flow asymptotic analysis |
topic |
ddc 000 misc infinite-server heterogeneous queuing system misc resource system misc parallel queuing misc Markov modulated Poisson flow misc asymptotic analysis |
topic_unstemmed |
ddc 000 misc infinite-server heterogeneous queuing system misc resource system misc parallel queuing misc Markov modulated Poisson flow misc asymptotic analysis |
topic_browse |
ddc 000 misc infinite-server heterogeneous queuing system misc resource system misc parallel queuing misc Markov modulated Poisson flow misc asymptotic analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Automation and remote control |
hierarchy_parent_id |
129603481 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Automation and remote control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129603481 (DE-600)241725-X (DE-576)015097315 |
title |
Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
ctrlnum |
(DE-627)OLC2132057818 (DE-He213)S0005117922080057-p |
title_full |
Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
author_sort |
Moiseeva, S. P. |
journal |
Automation and remote control |
journalStr |
Automation and remote control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1213 |
author_browse |
Moiseeva, S. P. Bushkova, T. V. Pankratova, E. V. Farkhadov, M. P. Imomov, A. A. |
container_volume |
83 |
class |
000 620 VZ |
format_se |
Aufsätze |
author-letter |
Moiseeva, S. P. |
doi_str_mv |
10.1134/S0005117922080057 |
dewey-full |
000 620 |
title_sort |
asymptotic analysis of resource heterogeneous qs $$ (\mathrm {mmpp}+2\mathrm {m})^{(2,\nu )}/\mathrm {gi}(2)/\infty $$ under equivalently increasing service time |
title_auth |
Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
abstract |
Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. © Pleiades Publishing, Ltd. 2022 |
abstractGer |
Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. © Pleiades Publishing, Ltd. 2022 |
abstract_unstemmed |
Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources. © Pleiades Publishing, Ltd. 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT |
container_issue |
8 |
title_short |
Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time |
url |
https://doi.org/10.1134/S0005117922080057 |
remote_bool |
false |
author2 |
Bushkova, T. V. Pankratova, E. V. Farkhadov, M. P. Imomov, A. A. |
author2Str |
Bushkova, T. V. Pankratova, E. V. Farkhadov, M. P. Imomov, A. A. |
ppnlink |
129603481 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0005117922080057 |
up_date |
2024-07-04T11:41:02.051Z |
_version_ |
1803648512349437952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2132057818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506064930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0005117922080057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2132057818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0005117922080057-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moiseeva, S. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Analysis of Resource Heterogeneous QS $$ (\mathrm {MMPP}+2\mathrm {M})^{(2,\nu )}/\mathrm {GI}(2)/\infty $$ under Equivalently Increasing Service Time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infinite-server heterogeneous queuing system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resource system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel queuing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov modulated Poisson flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bushkova, T. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pankratova, E. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farkhadov, M. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imomov, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Automation and remote control</subfield><subfield code="d">Pleiades Publishing, 1957</subfield><subfield code="g">83(2022), 8 vom: Aug., Seite 1213-1227</subfield><subfield code="w">(DE-627)129603481</subfield><subfield code="w">(DE-600)241725-X</subfield><subfield code="w">(DE-576)015097315</subfield><subfield code="x">0005-1179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1213-1227</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0005117922080057</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1213-1227</subfield></datafield></record></collection>
|
score |
7.401078 |