$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity
Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We p...
Ausführliche Beschreibung
Autor*in: |
Pardo, Rosa [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of fixed point theory and applications - Springer International Publishing, 2007, 25(2023), 2 vom: 06. Feb. |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2023 ; number:2 ; day:06 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s11784-023-01048-w |
---|
Katalog-ID: |
OLC213379784X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC213379784X | ||
003 | DE-627 | ||
005 | 20240118091934.0 | ||
007 | tu | ||
008 | 230506s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11784-023-01048-w |2 doi | |
035 | |a (DE-627)OLC213379784X | ||
035 | |a (DE-He213)s11784-023-01048-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Pardo, Rosa |e verfasserin |0 (orcid)0000-0003-1914-9203 |4 aut | |
245 | 1 | 0 | |a $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. | ||
650 | 4 | |a A priori estimates | |
650 | 4 | |a a priori bounds | |
650 | 4 | |a singular weights | |
650 | 4 | |a subcritical problems | |
773 | 0 | 8 | |i Enthalten in |t Journal of fixed point theory and applications |d Springer International Publishing, 2007 |g 25(2023), 2 vom: 06. Feb. |w (DE-627)548575800 |w (DE-600)2395316-0 |w (DE-576)340336587 |x 1661-7738 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2023 |g number:2 |g day:06 |g month:02 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11784-023-01048-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 25 |j 2023 |e 2 |b 06 |c 02 |
author_variant |
r p rp |
---|---|
matchkey_str |
article:16617738:2023----::ifymgaroisiaefruciiasmlnaelpieutosih |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11784-023-01048-w doi (DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p DE-627 ger DE-627 rakwb eng 510 VZ Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates a priori bounds singular weights subcritical problems Enthalten in Journal of fixed point theory and applications Springer International Publishing, 2007 25(2023), 2 vom: 06. Feb. (DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 1661-7738 nnns volume:25 year:2023 number:2 day:06 month:02 https://doi.org/10.1007/s11784-023-01048-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 25 2023 2 06 02 |
spelling |
10.1007/s11784-023-01048-w doi (DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p DE-627 ger DE-627 rakwb eng 510 VZ Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates a priori bounds singular weights subcritical problems Enthalten in Journal of fixed point theory and applications Springer International Publishing, 2007 25(2023), 2 vom: 06. Feb. (DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 1661-7738 nnns volume:25 year:2023 number:2 day:06 month:02 https://doi.org/10.1007/s11784-023-01048-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 25 2023 2 06 02 |
allfields_unstemmed |
10.1007/s11784-023-01048-w doi (DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p DE-627 ger DE-627 rakwb eng 510 VZ Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates a priori bounds singular weights subcritical problems Enthalten in Journal of fixed point theory and applications Springer International Publishing, 2007 25(2023), 2 vom: 06. Feb. (DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 1661-7738 nnns volume:25 year:2023 number:2 day:06 month:02 https://doi.org/10.1007/s11784-023-01048-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 25 2023 2 06 02 |
allfieldsGer |
10.1007/s11784-023-01048-w doi (DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p DE-627 ger DE-627 rakwb eng 510 VZ Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates a priori bounds singular weights subcritical problems Enthalten in Journal of fixed point theory and applications Springer International Publishing, 2007 25(2023), 2 vom: 06. Feb. (DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 1661-7738 nnns volume:25 year:2023 number:2 day:06 month:02 https://doi.org/10.1007/s11784-023-01048-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 25 2023 2 06 02 |
allfieldsSound |
10.1007/s11784-023-01048-w doi (DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p DE-627 ger DE-627 rakwb eng 510 VZ Pardo, Rosa verfasserin (orcid)0000-0003-1914-9203 aut $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. A priori estimates a priori bounds singular weights subcritical problems Enthalten in Journal of fixed point theory and applications Springer International Publishing, 2007 25(2023), 2 vom: 06. Feb. (DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 1661-7738 nnns volume:25 year:2023 number:2 day:06 month:02 https://doi.org/10.1007/s11784-023-01048-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 25 2023 2 06 02 |
language |
English |
source |
Enthalten in Journal of fixed point theory and applications 25(2023), 2 vom: 06. Feb. volume:25 year:2023 number:2 day:06 month:02 |
sourceStr |
Enthalten in Journal of fixed point theory and applications 25(2023), 2 vom: 06. Feb. volume:25 year:2023 number:2 day:06 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
A priori estimates a priori bounds singular weights subcritical problems |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of fixed point theory and applications |
authorswithroles_txt_mv |
Pardo, Rosa @@aut@@ |
publishDateDaySort_date |
2023-02-06T00:00:00Z |
hierarchy_top_id |
548575800 |
dewey-sort |
3510 |
id |
OLC213379784X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC213379784X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118091934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11784-023-01048-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC213379784X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11784-023-01048-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1914-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a priori bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular weights</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subcritical problems</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fixed point theory and applications</subfield><subfield code="d">Springer International Publishing, 2007</subfield><subfield code="g">25(2023), 2 vom: 06. Feb.</subfield><subfield code="w">(DE-627)548575800</subfield><subfield code="w">(DE-600)2395316-0</subfield><subfield code="w">(DE-576)340336587</subfield><subfield code="x">1661-7738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11784-023-01048-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Pardo, Rosa |
spellingShingle |
Pardo, Rosa ddc 510 misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
authorStr |
Pardo, Rosa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)548575800 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1661-7738 |
topic_title |
510 VZ $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity A priori estimates a priori bounds singular weights subcritical problems |
topic |
ddc 510 misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
topic_unstemmed |
ddc 510 misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
topic_browse |
ddc 510 misc A priori estimates misc a priori bounds misc singular weights misc subcritical problems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of fixed point theory and applications |
hierarchy_parent_id |
548575800 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of fixed point theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)548575800 (DE-600)2395316-0 (DE-576)340336587 |
title |
$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
ctrlnum |
(DE-627)OLC213379784X (DE-He213)s11784-023-01048-w-p |
title_full |
$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
author_sort |
Pardo, Rosa |
journal |
Journal of fixed point theory and applications |
journalStr |
Journal of fixed point theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Pardo, Rosa |
container_volume |
25 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Pardo, Rosa |
doi_str_mv |
10.1007/s11784-023-01048-w |
normlink |
(ORCID)0000-0003-1914-9203 |
normlink_prefix_str_mv |
(orcid)0000-0003-1914-9203 |
dewey-full |
510 |
title_sort |
$$l^\infty (\omega )$$ a priori estimates for subcritical semilinear elliptic equations with a carathéodory non-linearity |
title_auth |
$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
abstract |
Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
abstractGer |
Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
abstract_unstemmed |
Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
2 |
title_short |
$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity |
url |
https://doi.org/10.1007/s11784-023-01048-w |
remote_bool |
false |
ppnlink |
548575800 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11784-023-01048-w |
up_date |
2024-07-03T21:39:09.701Z |
_version_ |
1803595546316767232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC213379784X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118091934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11784-023-01048-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC213379784X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11784-023-01048-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardo, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1914-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a semilinear boundary value problem $$ -\Delta u= f(x,u),$$ in $$\Omega ,$$ with Dirichlet boundary conditions, where $$\Omega \subset {\mathbb {R}}^N $$ with $$N> 2,$$ is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide $$L^\infty (\Omega )$$ a priori estimates for weak solutions in terms of their $$L^{2^*}(\Omega )$$-norm, where $$2^*=\frac{2N}{N-2}\ $$ is the critical Sobolev exponent. In particular, our results also apply to $$f(x,s)=a(x)\,\frac{|s|^{2^*_{N/r}-2}s}{\big [\log (e+|s|)\big ]^\beta }\,$$, where $$a\in L^r(\Omega )$$ with $$N/2<r\le \infty $$, and $$2_{N/r}^*:=2^*\left( 1-\frac{1}{r}\right) $$. Assume $$N/2<r\le N$$. We show that for any $$\varepsilon >0$$ there exists a constant $$C_\varepsilon >0$$ such that for any solution $$u\in H^1_0(\Omega )$$, the following holds: [log(e+‖u‖∞)]β≤Cε(1+‖u‖2∗)(2N/r∗-2)(1+ε).$$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\beta \le C _\varepsilon \, \Big (1+\Vert u\Vert _{2^*}\Big )^{\, (2^*_{N/r}-2)(1+\varepsilon )}. \end{aligned}$$To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having $$H_0^1(\Omega )$$ uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having $$L^\infty (\Omega )$$ uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A priori estimates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a priori bounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular weights</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subcritical problems</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of fixed point theory and applications</subfield><subfield code="d">Springer International Publishing, 2007</subfield><subfield code="g">25(2023), 2 vom: 06. Feb.</subfield><subfield code="w">(DE-627)548575800</subfield><subfield code="w">(DE-600)2395316-0</subfield><subfield code="w">(DE-576)340336587</subfield><subfield code="x">1661-7738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11784-023-01048-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.399272 |