Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth
Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system,...
Ausführliche Beschreibung
Autor*in: |
Yang, Yu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 111(2022), 6 vom: 10. Dez., Seite 5799-5815 |
---|---|
Übergeordnetes Werk: |
volume:111 ; year:2022 ; number:6 ; day:10 ; month:12 ; pages:5799-5815 |
Links: |
---|
DOI / URN: |
10.1007/s11071-022-08114-x |
---|
Katalog-ID: |
OLC213381180X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC213381180X | ||
003 | DE-627 | ||
005 | 20230506153836.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-022-08114-x |2 doi | |
035 | |a (DE-627)OLC213381180X | ||
035 | |a (DE-He213)s11071-022-08114-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Yang, Yu |e verfasserin |0 (orcid)0000-0003-4802-0409 |4 aut | |
245 | 1 | 0 | |a Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. | ||
650 | 4 | |a Reaction-diffusion hair growth model | |
650 | 4 | |a Spatiotemporal patterns | |
650 | 4 | |a Diffusion-driven instability | |
650 | 4 | |a Spatially homogeneous periodic solutions | |
700 | 1 | |a Ju, Xiaowei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 111(2022), 6 vom: 10. Dez., Seite 5799-5815 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:111 |g year:2022 |g number:6 |g day:10 |g month:12 |g pages:5799-5815 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-022-08114-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 111 |j 2022 |e 6 |b 10 |c 12 |h 5799-5815 |
author_variant |
y y yy x j xj |
---|---|
matchkey_str |
article:0924090X:2022----::ifsodieisaiiyfhproisltosoaifsvssem |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11071-022-08114-x doi (DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Yang, Yu verfasserin (orcid)0000-0003-4802-0409 aut Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions Ju, Xiaowei aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 6 vom: 10. Dez., Seite 5799-5815 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 https://doi.org/10.1007/s11071-022-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 6 10 12 5799-5815 |
spelling |
10.1007/s11071-022-08114-x doi (DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Yang, Yu verfasserin (orcid)0000-0003-4802-0409 aut Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions Ju, Xiaowei aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 6 vom: 10. Dez., Seite 5799-5815 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 https://doi.org/10.1007/s11071-022-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 6 10 12 5799-5815 |
allfields_unstemmed |
10.1007/s11071-022-08114-x doi (DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Yang, Yu verfasserin (orcid)0000-0003-4802-0409 aut Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions Ju, Xiaowei aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 6 vom: 10. Dez., Seite 5799-5815 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 https://doi.org/10.1007/s11071-022-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 6 10 12 5799-5815 |
allfieldsGer |
10.1007/s11071-022-08114-x doi (DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Yang, Yu verfasserin (orcid)0000-0003-4802-0409 aut Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions Ju, Xiaowei aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 6 vom: 10. Dez., Seite 5799-5815 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 https://doi.org/10.1007/s11071-022-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 6 10 12 5799-5815 |
allfieldsSound |
10.1007/s11071-022-08114-x doi (DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Yang, Yu verfasserin (orcid)0000-0003-4802-0409 aut Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions Ju, Xiaowei aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 6 vom: 10. Dez., Seite 5799-5815 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 https://doi.org/10.1007/s11071-022-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 6 10 12 5799-5815 |
language |
English |
source |
Enthalten in Nonlinear dynamics 111(2022), 6 vom: 10. Dez., Seite 5799-5815 volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 |
sourceStr |
Enthalten in Nonlinear dynamics 111(2022), 6 vom: 10. Dez., Seite 5799-5815 volume:111 year:2022 number:6 day:10 month:12 pages:5799-5815 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Yang, Yu @@aut@@ Ju, Xiaowei @@aut@@ |
publishDateDaySort_date |
2022-12-10T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC213381180X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC213381180X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506153836.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-08114-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC213381180X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-08114-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4802-0409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction-diffusion hair growth model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatially homogeneous periodic solutions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Xiaowei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">111(2022), 6 vom: 10. Dez., Seite 5799-5815</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:5799-5815</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-08114-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">10</subfield><subfield code="c">12</subfield><subfield code="h">5799-5815</subfield></datafield></record></collection>
|
author |
Yang, Yu |
spellingShingle |
Yang, Yu ddc 510 ssgn 11 misc Reaction-diffusion hair growth model misc Spatiotemporal patterns misc Diffusion-driven instability misc Spatially homogeneous periodic solutions Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
authorStr |
Yang, Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth Reaction-diffusion hair growth model Spatiotemporal patterns Diffusion-driven instability Spatially homogeneous periodic solutions |
topic |
ddc 510 ssgn 11 misc Reaction-diffusion hair growth model misc Spatiotemporal patterns misc Diffusion-driven instability misc Spatially homogeneous periodic solutions |
topic_unstemmed |
ddc 510 ssgn 11 misc Reaction-diffusion hair growth model misc Spatiotemporal patterns misc Diffusion-driven instability misc Spatially homogeneous periodic solutions |
topic_browse |
ddc 510 ssgn 11 misc Reaction-diffusion hair growth model misc Spatiotemporal patterns misc Diffusion-driven instability misc Spatially homogeneous periodic solutions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
ctrlnum |
(DE-627)OLC213381180X (DE-He213)s11071-022-08114-x-p |
title_full |
Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
author_sort |
Yang, Yu |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
5799 |
author_browse |
Yang, Yu Ju, Xiaowei |
container_volume |
111 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Yang, Yu |
doi_str_mv |
10.1007/s11071-022-08114-x |
normlink |
(ORCID)0000-0003-4802-0409 |
normlink_prefix_str_mv |
(orcid)0000-0003-4802-0409 |
dewey-full |
510 |
title_sort |
diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
title_auth |
Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
abstract |
Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
6 |
title_short |
Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth |
url |
https://doi.org/10.1007/s11071-022-08114-x |
remote_bool |
false |
author2 |
Ju, Xiaowei |
author2Str |
Ju, Xiaowei |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-022-08114-x |
up_date |
2024-07-03T21:44:20.297Z |
_version_ |
1803595871995035648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC213381180X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506153836.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-08114-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC213381180X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-08114-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4802-0409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system, but unstable in the corresponding diffusive system if suitable diffusion rates are to be chosen. Once the diffusion-driven instability of the periodic solution occurs, new and rich spatiotemporal patterns could be generated. For this particular model, we are able to derive precise conditions on the diffusion rates so that under these conditions the periodic solution could experience diffusion-driven instability. Moreover, we also present some numerical simulations to demonstrate our analytical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction-diffusion hair growth model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatiotemporal patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatially homogeneous periodic solutions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Xiaowei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">111(2022), 6 vom: 10. Dez., Seite 5799-5815</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">day:10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:5799-5815</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-08114-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="b">10</subfield><subfield code="c">12</subfield><subfield code="h">5799-5815</subfield></datafield></record></collection>
|
score |
7.4002924 |