Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth

Abstract In this paper, we are mainly interested in studying diffusion-driven instability of the bifurcating periodic solution for a diffusive system modeling mammalian hair growth. We say that a periodic solution undergoes diffusion-driven instability, if it is stable with respect to an ODE system,...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yang, Yu [verfasserIn]

Ju, Xiaowei

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Reaction-diffusion hair growth model

Spatiotemporal patterns

Diffusion-driven instability

Spatially homogeneous periodic solutions

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 111(2022), 6 vom: 10. Dez., Seite 5799-5815

Übergeordnetes Werk:

volume:111 ; year:2022 ; number:6 ; day:10 ; month:12 ; pages:5799-5815

Links:

Volltext

DOI / URN:

10.1007/s11071-022-08114-x

Katalog-ID:

OLC213381180X

Nicht das Richtige dabei?

Schreiben Sie uns!