Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind
Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world...
Ausführliche Beschreibung
Autor*in: |
Sun, Lisa H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: The Ramanujan journal - Springer US, 1997, 60(2022), 3 vom: 27. Okt., Seite 761-794 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2022 ; number:3 ; day:27 ; month:10 ; pages:761-794 |
Links: |
---|
DOI / URN: |
10.1007/s11139-022-00627-8 |
---|
Katalog-ID: |
OLC2134162740 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134162740 | ||
003 | DE-627 | ||
005 | 20230506161714.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11139-022-00627-8 |2 doi | |
035 | |a (DE-627)OLC2134162740 | ||
035 | |a (DE-He213)s11139-022-00627-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 7,24 |2 ssgn | ||
100 | 1 | |a Sun, Lisa H. |e verfasserin |0 (orcid)0000-0002-0901-9539 |4 aut | |
245 | 1 | 0 | |a Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. | ||
650 | 4 | |a Rogers–Ramanujan type identities | |
650 | 4 | |a Dyson’s favorite identity | |
650 | 4 | |a Bailey pair | |
650 | 4 | |a Bailey’s lemma | |
650 | 4 | |a Chebyshev polynomials | |
650 | 4 | |a Appell–Lerch series | |
650 | 4 | |a Hecke-type series | |
650 | 4 | |a False theta functions | |
773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Springer US, 1997 |g 60(2022), 3 vom: 27. Okt., Seite 761-794 |w (DE-627)234141301 |w (DE-600)1394097-1 |w (DE-576)100004989 |x 1382-4090 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2022 |g number:3 |g day:27 |g month:10 |g pages:761-794 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11139-022-00627-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ANG | ||
951 | |a AR | ||
952 | |d 60 |j 2022 |e 3 |b 27 |c 10 |h 761-794 |
author_variant |
l h s lh lhs |
---|---|
matchkey_str |
article:13824090:2022----::oesaauatpietteadhbseplnm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11139-022-00627-8 doi (DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Sun, Lisa H. verfasserin (orcid)0000-0002-0901-9539 aut Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions Enthalten in The Ramanujan journal Springer US, 1997 60(2022), 3 vom: 27. Okt., Seite 761-794 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2022 number:3 day:27 month:10 pages:761-794 https://doi.org/10.1007/s11139-022-00627-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2022 3 27 10 761-794 |
spelling |
10.1007/s11139-022-00627-8 doi (DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Sun, Lisa H. verfasserin (orcid)0000-0002-0901-9539 aut Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions Enthalten in The Ramanujan journal Springer US, 1997 60(2022), 3 vom: 27. Okt., Seite 761-794 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2022 number:3 day:27 month:10 pages:761-794 https://doi.org/10.1007/s11139-022-00627-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2022 3 27 10 761-794 |
allfields_unstemmed |
10.1007/s11139-022-00627-8 doi (DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Sun, Lisa H. verfasserin (orcid)0000-0002-0901-9539 aut Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions Enthalten in The Ramanujan journal Springer US, 1997 60(2022), 3 vom: 27. Okt., Seite 761-794 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2022 number:3 day:27 month:10 pages:761-794 https://doi.org/10.1007/s11139-022-00627-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2022 3 27 10 761-794 |
allfieldsGer |
10.1007/s11139-022-00627-8 doi (DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Sun, Lisa H. verfasserin (orcid)0000-0002-0901-9539 aut Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions Enthalten in The Ramanujan journal Springer US, 1997 60(2022), 3 vom: 27. Okt., Seite 761-794 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2022 number:3 day:27 month:10 pages:761-794 https://doi.org/10.1007/s11139-022-00627-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2022 3 27 10 761-794 |
allfieldsSound |
10.1007/s11139-022-00627-8 doi (DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Sun, Lisa H. verfasserin (orcid)0000-0002-0901-9539 aut Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions Enthalten in The Ramanujan journal Springer US, 1997 60(2022), 3 vom: 27. Okt., Seite 761-794 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2022 number:3 day:27 month:10 pages:761-794 https://doi.org/10.1007/s11139-022-00627-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2022 3 27 10 761-794 |
language |
English |
source |
Enthalten in The Ramanujan journal 60(2022), 3 vom: 27. Okt., Seite 761-794 volume:60 year:2022 number:3 day:27 month:10 pages:761-794 |
sourceStr |
Enthalten in The Ramanujan journal 60(2022), 3 vom: 27. Okt., Seite 761-794 volume:60 year:2022 number:3 day:27 month:10 pages:761-794 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The Ramanujan journal |
authorswithroles_txt_mv |
Sun, Lisa H. @@aut@@ |
publishDateDaySort_date |
2022-10-27T00:00:00Z |
hierarchy_top_id |
234141301 |
dewey-sort |
3510 |
id |
OLC2134162740 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134162740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-022-00627-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134162740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-022-00627-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0901-9539</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rogers–Ramanujan type identities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dyson’s favorite identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey pair</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey’s lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appell–Lerch series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke-type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False theta functions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">60(2022), 3 vom: 27. Okt., Seite 761-794</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:761-794</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-022-00627-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">10</subfield><subfield code="h">761-794</subfield></datafield></record></collection>
|
author |
Sun, Lisa H. |
spellingShingle |
Sun, Lisa H. ddc 510 ssgn 7,24 misc Rogers–Ramanujan type identities misc Dyson’s favorite identity misc Bailey pair misc Bailey’s lemma misc Chebyshev polynomials misc Appell–Lerch series misc Hecke-type series misc False theta functions Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
authorStr |
Sun, Lisa H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234141301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-4090 |
topic_title |
510 VZ 7,24 ssgn Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind Rogers–Ramanujan type identities Dyson’s favorite identity Bailey pair Bailey’s lemma Chebyshev polynomials Appell–Lerch series Hecke-type series False theta functions |
topic |
ddc 510 ssgn 7,24 misc Rogers–Ramanujan type identities misc Dyson’s favorite identity misc Bailey pair misc Bailey’s lemma misc Chebyshev polynomials misc Appell–Lerch series misc Hecke-type series misc False theta functions |
topic_unstemmed |
ddc 510 ssgn 7,24 misc Rogers–Ramanujan type identities misc Dyson’s favorite identity misc Bailey pair misc Bailey’s lemma misc Chebyshev polynomials misc Appell–Lerch series misc Hecke-type series misc False theta functions |
topic_browse |
ddc 510 ssgn 7,24 misc Rogers–Ramanujan type identities misc Dyson’s favorite identity misc Bailey pair misc Bailey’s lemma misc Chebyshev polynomials misc Appell–Lerch series misc Hecke-type series misc False theta functions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Ramanujan journal |
hierarchy_parent_id |
234141301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The Ramanujan journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 |
title |
Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
ctrlnum |
(DE-627)OLC2134162740 (DE-He213)s11139-022-00627-8-p |
title_full |
Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
author_sort |
Sun, Lisa H. |
journal |
The Ramanujan journal |
journalStr |
The Ramanujan journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
761 |
author_browse |
Sun, Lisa H. |
container_volume |
60 |
class |
510 VZ 7,24 ssgn |
format_se |
Aufsätze |
author-letter |
Sun, Lisa H. |
doi_str_mv |
10.1007/s11139-022-00627-8 |
normlink |
(ORCID)0000-0002-0901-9539 |
normlink_prefix_str_mv |
(orcid)0000-0002-0901-9539 |
dewey-full |
510 |
title_sort |
rogers–ramanujan type identities and chebyshev polynomials of the third kind |
title_auth |
Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
abstract |
Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG |
container_issue |
3 |
title_short |
Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind |
url |
https://doi.org/10.1007/s11139-022-00627-8 |
remote_bool |
false |
ppnlink |
234141301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11139-022-00627-8 |
up_date |
2024-07-03T23:45:57.229Z |
_version_ |
1803603523385950208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134162740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-022-00627-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134162740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-022-00627-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0901-9539</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rogers–Ramanujan type identities and Chebyshev polynomials of the third kind</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is known that q-orthogonal polynomials play an important role in the field of q-series and special functions. While studying Dyson’s “favorite” identity of Rogers–Ramanujan type, Andrews pointed out that the classical orthogonal polynomials also have surprising applications in the world of q. By introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs, Andrews derived a family of Rogers–Ramanujan type identities and also results related to mock theta functions and Hecke-type series. In this paper, by constructing a new Bailey pair involving Chebyshev polynomials of the third kind, we further extend Andrews’ way of studying Rogers-Ramanujan type identities. By inserting this Bailey pair into various weak forms of Bailey’s lemma, we obtain a companion identity for Dyson’s favorite identity and a number of Rogers–Ramanujan type identities. As a consequences, we also obtain results related to Appell–Lerch series and the generalized Hecke-type series. Furthermore, our key Bailey pair also fits in the bilateral versions of Bailey’s lemma due to Andrews and Warnaar, which leads to more identities for the generalized Hecke-type series and false theta functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rogers–Ramanujan type identities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dyson’s favorite identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey pair</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey’s lemma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appell–Lerch series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke-type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False theta functions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">60(2022), 3 vom: 27. Okt., Seite 761-794</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:761-794</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-022-00627-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">10</subfield><subfield code="h">761-794</subfield></datafield></record></collection>
|
score |
7.401045 |