Several q-series transformation formulas and new Hecke–Rogers type series identities
Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations a...
Ausführliche Beschreibung
Autor*in: |
Zhang, Ying [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: The Ramanujan journal - Springer US, 1997, 60(2023), 3 vom: 27. Jan., Seite 627-657 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2023 ; number:3 ; day:27 ; month:01 ; pages:627-657 |
Links: |
---|
DOI / URN: |
10.1007/s11139-022-00645-6 |
---|
Katalog-ID: |
OLC2134162783 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134162783 | ||
003 | DE-627 | ||
005 | 20230506161714.0 | ||
007 | tu | ||
008 | 230506s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11139-022-00645-6 |2 doi | |
035 | |a (DE-627)OLC2134162783 | ||
035 | |a (DE-He213)s11139-022-00645-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 7,24 |2 ssgn | ||
100 | 1 | |a Zhang, Ying |e verfasserin |4 aut | |
245 | 1 | 0 | |a Several q-series transformation formulas and new Hecke–Rogers type series identities |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. | ||
650 | 4 | |a Hecke–Rogers type series | |
650 | 4 | |a Bailey’s formula | |
650 | 4 | |a Watson’s | |
650 | 4 | |a -Whipple transformation formula | |
650 | 4 | |a -Orthogonal polynomials | |
700 | 1 | |a Zhang, Wenlong |4 aut | |
700 | 1 | |a Zhang, Jingjing |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Springer US, 1997 |g 60(2023), 3 vom: 27. Jan., Seite 627-657 |w (DE-627)234141301 |w (DE-600)1394097-1 |w (DE-576)100004989 |x 1382-4090 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2023 |g number:3 |g day:27 |g month:01 |g pages:627-657 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11139-022-00645-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ANG | ||
951 | |a AR | ||
952 | |d 60 |j 2023 |e 3 |b 27 |c 01 |h 627-657 |
author_variant |
y z yz w z wz j z jz |
---|---|
matchkey_str |
article:13824090:2023----::eeaqeisrnfrainomlsnnwekrgrt |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11139-022-00645-6 doi (DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Several q-series transformation formulas and new Hecke–Rogers type series identities 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials Zhang, Wenlong aut Zhang, Jingjing aut Enthalten in The Ramanujan journal Springer US, 1997 60(2023), 3 vom: 27. Jan., Seite 627-657 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2023 number:3 day:27 month:01 pages:627-657 https://doi.org/10.1007/s11139-022-00645-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2023 3 27 01 627-657 |
spelling |
10.1007/s11139-022-00645-6 doi (DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Several q-series transformation formulas and new Hecke–Rogers type series identities 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials Zhang, Wenlong aut Zhang, Jingjing aut Enthalten in The Ramanujan journal Springer US, 1997 60(2023), 3 vom: 27. Jan., Seite 627-657 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2023 number:3 day:27 month:01 pages:627-657 https://doi.org/10.1007/s11139-022-00645-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2023 3 27 01 627-657 |
allfields_unstemmed |
10.1007/s11139-022-00645-6 doi (DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Several q-series transformation formulas and new Hecke–Rogers type series identities 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials Zhang, Wenlong aut Zhang, Jingjing aut Enthalten in The Ramanujan journal Springer US, 1997 60(2023), 3 vom: 27. Jan., Seite 627-657 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2023 number:3 day:27 month:01 pages:627-657 https://doi.org/10.1007/s11139-022-00645-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2023 3 27 01 627-657 |
allfieldsGer |
10.1007/s11139-022-00645-6 doi (DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Several q-series transformation formulas and new Hecke–Rogers type series identities 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials Zhang, Wenlong aut Zhang, Jingjing aut Enthalten in The Ramanujan journal Springer US, 1997 60(2023), 3 vom: 27. Jan., Seite 627-657 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2023 number:3 day:27 month:01 pages:627-657 https://doi.org/10.1007/s11139-022-00645-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2023 3 27 01 627-657 |
allfieldsSound |
10.1007/s11139-022-00645-6 doi (DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Several q-series transformation formulas and new Hecke–Rogers type series identities 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials Zhang, Wenlong aut Zhang, Jingjing aut Enthalten in The Ramanujan journal Springer US, 1997 60(2023), 3 vom: 27. Jan., Seite 627-657 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:60 year:2023 number:3 day:27 month:01 pages:627-657 https://doi.org/10.1007/s11139-022-00645-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 60 2023 3 27 01 627-657 |
language |
English |
source |
Enthalten in The Ramanujan journal 60(2023), 3 vom: 27. Jan., Seite 627-657 volume:60 year:2023 number:3 day:27 month:01 pages:627-657 |
sourceStr |
Enthalten in The Ramanujan journal 60(2023), 3 vom: 27. Jan., Seite 627-657 volume:60 year:2023 number:3 day:27 month:01 pages:627-657 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The Ramanujan journal |
authorswithroles_txt_mv |
Zhang, Ying @@aut@@ Zhang, Wenlong @@aut@@ Zhang, Jingjing @@aut@@ |
publishDateDaySort_date |
2023-01-27T00:00:00Z |
hierarchy_top_id |
234141301 |
dewey-sort |
3510 |
id |
OLC2134162783 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134162783</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-022-00645-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134162783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-022-00645-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several q-series transformation formulas and new Hecke–Rogers type series identities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke–Rogers type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey’s formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watson’s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Whipple transformation formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Orthogonal polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">60(2023), 3 vom: 27. Jan., Seite 627-657</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:627-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-022-00645-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">01</subfield><subfield code="h">627-657</subfield></datafield></record></collection>
|
author |
Zhang, Ying |
spellingShingle |
Zhang, Ying ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Bailey’s formula misc Watson’s misc -Whipple transformation formula misc -Orthogonal polynomials Several q-series transformation formulas and new Hecke–Rogers type series identities |
authorStr |
Zhang, Ying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234141301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-4090 |
topic_title |
510 VZ 7,24 ssgn Several q-series transformation formulas and new Hecke–Rogers type series identities Hecke–Rogers type series Bailey’s formula Watson’s -Whipple transformation formula -Orthogonal polynomials |
topic |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Bailey’s formula misc Watson’s misc -Whipple transformation formula misc -Orthogonal polynomials |
topic_unstemmed |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Bailey’s formula misc Watson’s misc -Whipple transformation formula misc -Orthogonal polynomials |
topic_browse |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Bailey’s formula misc Watson’s misc -Whipple transformation formula misc -Orthogonal polynomials |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Ramanujan journal |
hierarchy_parent_id |
234141301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The Ramanujan journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 |
title |
Several q-series transformation formulas and new Hecke–Rogers type series identities |
ctrlnum |
(DE-627)OLC2134162783 (DE-He213)s11139-022-00645-6-p |
title_full |
Several q-series transformation formulas and new Hecke–Rogers type series identities |
author_sort |
Zhang, Ying |
journal |
The Ramanujan journal |
journalStr |
The Ramanujan journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
627 |
author_browse |
Zhang, Ying Zhang, Wenlong Zhang, Jingjing |
container_volume |
60 |
class |
510 VZ 7,24 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Ying |
doi_str_mv |
10.1007/s11139-022-00645-6 |
dewey-full |
510 |
title_sort |
several q-series transformation formulas and new hecke–rogers type series identities |
title_auth |
Several q-series transformation formulas and new Hecke–Rogers type series identities |
abstract |
Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG |
container_issue |
3 |
title_short |
Several q-series transformation formulas and new Hecke–Rogers type series identities |
url |
https://doi.org/10.1007/s11139-022-00645-6 |
remote_bool |
false |
author2 |
Zhang, Wenlong Zhang, Jingjing |
author2Str |
Zhang, Wenlong Zhang, Jingjing |
ppnlink |
234141301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11139-022-00645-6 |
up_date |
2024-07-03T23:45:57.768Z |
_version_ |
1803603523949035520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134162783</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-022-00645-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134162783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-022-00645-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several q-series transformation formulas and new Hecke–Rogers type series identities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we establish a general q-series expansion formula based on Bailey’s summation formula, whose limiting form reduces to the q-series expansion formula due to Wang and Chern (Integral Transform Special Funct 31(11):873–890, 2020). As applications, four q-series transformations are derived, which imply numerous new Hecke–Rogers type series representations for Eulerian form series and double sums, especially involving the special cases of several q-orthogonal polynomials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke–Rogers type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bailey’s formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watson’s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Whipple transformation formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Orthogonal polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">60(2023), 3 vom: 27. Jan., Seite 627-657</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:627-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-022-00645-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">01</subfield><subfield code="h">627-657</subfield></datafield></record></collection>
|
score |
7.402231 |