3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution
We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was...
Ausführliche Beschreibung
Autor*in: |
Dzhikirba, K. R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Radiophysics and quantum electronics - Springer US, 1969, 65(2022), 4 vom: Sept., Seite 287-294 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2022 ; number:4 ; month:09 ; pages:287-294 |
Links: |
---|
DOI / URN: |
10.1007/s11141-023-10212-8 |
---|
Katalog-ID: |
OLC2134218428 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134218428 | ||
003 | DE-627 | ||
005 | 20230506162116.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11141-023-10212-8 |2 doi | |
035 | |a (DE-627)OLC2134218428 | ||
035 | |a (DE-He213)s11141-023-10212-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
100 | 1 | |a Dzhikirba, K. R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. | ||
700 | 1 | |a Gusikhin, P. A. |4 aut | |
700 | 1 | |a Murav’ev, V. M. |4 aut | |
700 | 1 | |a Kukushkin, I. V. |4 aut | |
700 | 1 | |a Gospodarič, J. |4 aut | |
700 | 1 | |a Pimenov, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiophysics and quantum electronics |d Springer US, 1969 |g 65(2022), 4 vom: Sept., Seite 287-294 |w (DE-627)130499560 |w (DE-600)760167-0 |w (DE-576)016080793 |x 0033-8443 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2022 |g number:4 |g month:09 |g pages:287-294 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11141-023-10212-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
951 | |a AR | ||
952 | |d 65 |j 2022 |e 4 |c 09 |h 287-294 |
author_variant |
k r d kr krd p a g pa pag v m m vm vmm i v k iv ivk j g jg a p ap |
---|---|
matchkey_str |
article:00338443:2022----::drnepaeaeltsocetootrhrzemwtl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11141-023-10212-8 doi (DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p DE-627 ger DE-627 rakwb eng 530 620 VZ Dzhikirba, K. R. verfasserin aut 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. Gusikhin, P. A. aut Murav’ev, V. M. aut Kukushkin, I. V. aut Gospodarič, J. aut Pimenov, A. aut Enthalten in Radiophysics and quantum electronics Springer US, 1969 65(2022), 4 vom: Sept., Seite 287-294 (DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 0033-8443 nnns volume:65 year:2022 number:4 month:09 pages:287-294 https://doi.org/10.1007/s11141-023-10212-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST AR 65 2022 4 09 287-294 |
spelling |
10.1007/s11141-023-10212-8 doi (DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p DE-627 ger DE-627 rakwb eng 530 620 VZ Dzhikirba, K. R. verfasserin aut 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. Gusikhin, P. A. aut Murav’ev, V. M. aut Kukushkin, I. V. aut Gospodarič, J. aut Pimenov, A. aut Enthalten in Radiophysics and quantum electronics Springer US, 1969 65(2022), 4 vom: Sept., Seite 287-294 (DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 0033-8443 nnns volume:65 year:2022 number:4 month:09 pages:287-294 https://doi.org/10.1007/s11141-023-10212-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST AR 65 2022 4 09 287-294 |
allfields_unstemmed |
10.1007/s11141-023-10212-8 doi (DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p DE-627 ger DE-627 rakwb eng 530 620 VZ Dzhikirba, K. R. verfasserin aut 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. Gusikhin, P. A. aut Murav’ev, V. M. aut Kukushkin, I. V. aut Gospodarič, J. aut Pimenov, A. aut Enthalten in Radiophysics and quantum electronics Springer US, 1969 65(2022), 4 vom: Sept., Seite 287-294 (DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 0033-8443 nnns volume:65 year:2022 number:4 month:09 pages:287-294 https://doi.org/10.1007/s11141-023-10212-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST AR 65 2022 4 09 287-294 |
allfieldsGer |
10.1007/s11141-023-10212-8 doi (DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p DE-627 ger DE-627 rakwb eng 530 620 VZ Dzhikirba, K. R. verfasserin aut 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. Gusikhin, P. A. aut Murav’ev, V. M. aut Kukushkin, I. V. aut Gospodarič, J. aut Pimenov, A. aut Enthalten in Radiophysics and quantum electronics Springer US, 1969 65(2022), 4 vom: Sept., Seite 287-294 (DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 0033-8443 nnns volume:65 year:2022 number:4 month:09 pages:287-294 https://doi.org/10.1007/s11141-023-10212-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST AR 65 2022 4 09 287-294 |
allfieldsSound |
10.1007/s11141-023-10212-8 doi (DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p DE-627 ger DE-627 rakwb eng 530 620 VZ Dzhikirba, K. R. verfasserin aut 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. Gusikhin, P. A. aut Murav’ev, V. M. aut Kukushkin, I. V. aut Gospodarič, J. aut Pimenov, A. aut Enthalten in Radiophysics and quantum electronics Springer US, 1969 65(2022), 4 vom: Sept., Seite 287-294 (DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 0033-8443 nnns volume:65 year:2022 number:4 month:09 pages:287-294 https://doi.org/10.1007/s11141-023-10212-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST AR 65 2022 4 09 287-294 |
language |
English |
source |
Enthalten in Radiophysics and quantum electronics 65(2022), 4 vom: Sept., Seite 287-294 volume:65 year:2022 number:4 month:09 pages:287-294 |
sourceStr |
Enthalten in Radiophysics and quantum electronics 65(2022), 4 vom: Sept., Seite 287-294 volume:65 year:2022 number:4 month:09 pages:287-294 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Radiophysics and quantum electronics |
authorswithroles_txt_mv |
Dzhikirba, K. R. @@aut@@ Gusikhin, P. A. @@aut@@ Murav’ev, V. M. @@aut@@ Kukushkin, I. V. @@aut@@ Gospodarič, J. @@aut@@ Pimenov, A. @@aut@@ |
publishDateDaySort_date |
2022-09-01T00:00:00Z |
hierarchy_top_id |
130499560 |
dewey-sort |
3530 |
id |
OLC2134218428 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134218428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162116.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11141-023-10212-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134218428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11141-023-10212-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzhikirba, K. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gusikhin, P. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murav’ev, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kukushkin, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gospodarič, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pimenov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiophysics and quantum electronics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">65(2022), 4 vom: Sept., Seite 287-294</subfield><subfield code="w">(DE-627)130499560</subfield><subfield code="w">(DE-600)760167-0</subfield><subfield code="w">(DE-576)016080793</subfield><subfield code="x">0033-8443</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:287-294</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11141-023-10212-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="c">09</subfield><subfield code="h">287-294</subfield></datafield></record></collection>
|
author |
Dzhikirba, K. R. |
spellingShingle |
Dzhikirba, K. R. ddc 530 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
authorStr |
Dzhikirba, K. R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130499560 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0033-8443 |
topic_title |
530 620 VZ 3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
topic |
ddc 530 |
topic_unstemmed |
ddc 530 |
topic_browse |
ddc 530 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Radiophysics and quantum electronics |
hierarchy_parent_id |
130499560 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Radiophysics and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130499560 (DE-600)760167-0 (DE-576)016080793 |
title |
3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
ctrlnum |
(DE-627)OLC2134218428 (DE-He213)s11141-023-10212-8-p |
title_full |
3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
author_sort |
Dzhikirba, K. R. |
journal |
Radiophysics and quantum electronics |
journalStr |
Radiophysics and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
287 |
author_browse |
Dzhikirba, K. R. Gusikhin, P. A. Murav’ev, V. M. Kukushkin, I. V. Gospodarič, J. Pimenov, A. |
container_volume |
65 |
class |
530 620 VZ |
format_se |
Aufsätze |
author-letter |
Dzhikirba, K. R. |
doi_str_mv |
10.1007/s11141-023-10212-8 |
dewey-full |
530 620 |
title_sort |
3d-printed phase wave plates for creation of terahertz beams with linear power distribution |
title_auth |
3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
abstract |
We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners. © Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OPC-AST |
container_issue |
4 |
title_short |
3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution |
url |
https://doi.org/10.1007/s11141-023-10212-8 |
remote_bool |
false |
author2 |
Gusikhin, P. A. Murav’ev, V. M. Kukushkin, I. V. Gospodarič, J. Pimenov, A. |
author2Str |
Gusikhin, P. A. Murav’ev, V. M. Kukushkin, I. V. Gospodarič, J. Pimenov, A. |
ppnlink |
130499560 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11141-023-10212-8 |
up_date |
2024-07-04T00:03:24.124Z |
_version_ |
1803604621131776000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134218428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162116.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11141-023-10212-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134218428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11141-023-10212-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzhikirba, K. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D-Printed Phase Wave Plates for Creation of Terahertz Beams with Linear Power Distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We calculate the profile of a phase plate for an operating frequency of 100 GHz, which allows one to obtain a beam with the most uniform power distribution in the region 384 × 6 mm at a distance of 50 cm, using the Gerchberg–Saxton iterative algorithm. A series of phase plates made of polyamide was 3D-printed. The parameters of the phase plate measured experimentally agree well with the theoretical calculations. The depth resolution of the image and the dependence of the beam profile on the frequency of the incident radiation are also studied. The obtained results are of practical use in the field of nondestructive control for the creation of linear terahertz scanners.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gusikhin, P. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murav’ev, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kukushkin, I. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gospodarič, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pimenov, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiophysics and quantum electronics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">65(2022), 4 vom: Sept., Seite 287-294</subfield><subfield code="w">(DE-627)130499560</subfield><subfield code="w">(DE-600)760167-0</subfield><subfield code="w">(DE-576)016080793</subfield><subfield code="x">0033-8443</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:287-294</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11141-023-10212-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="c">09</subfield><subfield code="h">287-294</subfield></datafield></record></collection>
|
score |
7.401165 |