CommuNety: deep learning-based face recognition system for the prediction of cohesive communities
Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated...
Ausführliche Beschreibung
Autor*in: |
Shah, Syed Afaq Ali [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 82(2022), 7 vom: 10. Sept., Seite 10641-10659 |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2022 ; number:7 ; day:10 ; month:09 ; pages:10641-10659 |
Links: |
---|
DOI / URN: |
10.1007/s11042-022-13741-y |
---|
Katalog-ID: |
OLC2134257563 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134257563 | ||
003 | DE-627 | ||
005 | 20230506162505.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-022-13741-y |2 doi | |
035 | |a (DE-627)OLC2134257563 | ||
035 | |a (DE-He213)s11042-022-13741-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Shah, Syed Afaq Ali |e verfasserin |0 (orcid)0000-0003-2181-8445 |4 aut | |
245 | 1 | 0 | |a CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. | ||
650 | 4 | |a Deep learning | |
650 | 4 | |a Social communities | |
650 | 4 | |a Predictive modelling | |
700 | 1 | |a Deng, Weifeng |4 aut | |
700 | 1 | |a Cheema, Muhammad Aamir |4 aut | |
700 | 1 | |a Bais, Abdul |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 82(2022), 7 vom: 10. Sept., Seite 10641-10659 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:2022 |g number:7 |g day:10 |g month:09 |g pages:10641-10659 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-022-13741-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
951 | |a AR | ||
952 | |d 82 |j 2022 |e 7 |b 10 |c 09 |h 10641-10659 |
author_variant |
s a a s saa saas w d wd m a c ma mac a b ab |
---|---|
matchkey_str |
article:13807501:2022----::omntdelannbsdaeeontossefrhpeito |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11042-022-13741-y doi (DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shah, Syed Afaq Ali verfasserin (orcid)0000-0003-2181-8445 aut CommuNety: deep learning-based face recognition system for the prediction of cohesive communities 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. Deep learning Social communities Predictive modelling Deng, Weifeng aut Cheema, Muhammad Aamir aut Bais, Abdul aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2022), 7 vom: 10. Sept., Seite 10641-10659 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 https://doi.org/10.1007/s11042-022-13741-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2022 7 10 09 10641-10659 |
spelling |
10.1007/s11042-022-13741-y doi (DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shah, Syed Afaq Ali verfasserin (orcid)0000-0003-2181-8445 aut CommuNety: deep learning-based face recognition system for the prediction of cohesive communities 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. Deep learning Social communities Predictive modelling Deng, Weifeng aut Cheema, Muhammad Aamir aut Bais, Abdul aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2022), 7 vom: 10. Sept., Seite 10641-10659 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 https://doi.org/10.1007/s11042-022-13741-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2022 7 10 09 10641-10659 |
allfields_unstemmed |
10.1007/s11042-022-13741-y doi (DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shah, Syed Afaq Ali verfasserin (orcid)0000-0003-2181-8445 aut CommuNety: deep learning-based face recognition system for the prediction of cohesive communities 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. Deep learning Social communities Predictive modelling Deng, Weifeng aut Cheema, Muhammad Aamir aut Bais, Abdul aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2022), 7 vom: 10. Sept., Seite 10641-10659 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 https://doi.org/10.1007/s11042-022-13741-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2022 7 10 09 10641-10659 |
allfieldsGer |
10.1007/s11042-022-13741-y doi (DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shah, Syed Afaq Ali verfasserin (orcid)0000-0003-2181-8445 aut CommuNety: deep learning-based face recognition system for the prediction of cohesive communities 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. Deep learning Social communities Predictive modelling Deng, Weifeng aut Cheema, Muhammad Aamir aut Bais, Abdul aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2022), 7 vom: 10. Sept., Seite 10641-10659 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 https://doi.org/10.1007/s11042-022-13741-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2022 7 10 09 10641-10659 |
allfieldsSound |
10.1007/s11042-022-13741-y doi (DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shah, Syed Afaq Ali verfasserin (orcid)0000-0003-2181-8445 aut CommuNety: deep learning-based face recognition system for the prediction of cohesive communities 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. Deep learning Social communities Predictive modelling Deng, Weifeng aut Cheema, Muhammad Aamir aut Bais, Abdul aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2022), 7 vom: 10. Sept., Seite 10641-10659 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 https://doi.org/10.1007/s11042-022-13741-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2022 7 10 09 10641-10659 |
language |
English |
source |
Enthalten in Multimedia tools and applications 82(2022), 7 vom: 10. Sept., Seite 10641-10659 volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 |
sourceStr |
Enthalten in Multimedia tools and applications 82(2022), 7 vom: 10. Sept., Seite 10641-10659 volume:82 year:2022 number:7 day:10 month:09 pages:10641-10659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Deep learning Social communities Predictive modelling |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Shah, Syed Afaq Ali @@aut@@ Deng, Weifeng @@aut@@ Cheema, Muhammad Aamir @@aut@@ Bais, Abdul @@aut@@ |
publishDateDaySort_date |
2022-09-10T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2134257563 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134257563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-022-13741-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134257563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-022-13741-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shah, Syed Afaq Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2181-8445</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CommuNety: deep learning-based face recognition system for the prediction of cohesive communities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social communities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Weifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, Muhammad Aamir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bais, Abdul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">82(2022), 7 vom: 10. Sept., Seite 10641-10659</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:10641-10659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-022-13741-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">10</subfield><subfield code="c">09</subfield><subfield code="h">10641-10659</subfield></datafield></record></collection>
|
author |
Shah, Syed Afaq Ali |
spellingShingle |
Shah, Syed Afaq Ali ddc 070 misc Deep learning misc Social communities misc Predictive modelling CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
authorStr |
Shah, Syed Afaq Ali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ CommuNety: deep learning-based face recognition system for the prediction of cohesive communities Deep learning Social communities Predictive modelling |
topic |
ddc 070 misc Deep learning misc Social communities misc Predictive modelling |
topic_unstemmed |
ddc 070 misc Deep learning misc Social communities misc Predictive modelling |
topic_browse |
ddc 070 misc Deep learning misc Social communities misc Predictive modelling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
ctrlnum |
(DE-627)OLC2134257563 (DE-He213)s11042-022-13741-y-p |
title_full |
CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
author_sort |
Shah, Syed Afaq Ali |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
10641 |
author_browse |
Shah, Syed Afaq Ali Deng, Weifeng Cheema, Muhammad Aamir Bais, Abdul |
container_volume |
82 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Shah, Syed Afaq Ali |
doi_str_mv |
10.1007/s11042-022-13741-y |
normlink |
(ORCID)0000-0003-2181-8445 |
normlink_prefix_str_mv |
(orcid)0000-0003-2181-8445 |
dewey-full |
070 004 |
title_sort |
communety: deep learning-based face recognition system for the prediction of cohesive communities |
title_auth |
CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
abstract |
Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. © The Author(s) 2022 |
abstractGer |
Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW |
container_issue |
7 |
title_short |
CommuNety: deep learning-based face recognition system for the prediction of cohesive communities |
url |
https://doi.org/10.1007/s11042-022-13741-y |
remote_bool |
false |
author2 |
Deng, Weifeng Cheema, Muhammad Aamir Bais, Abdul |
author2Str |
Deng, Weifeng Cheema, Muhammad Aamir Bais, Abdul |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-022-13741-y |
up_date |
2024-07-04T00:15:25.541Z |
_version_ |
1803605377594425345 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134257563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-022-13741-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134257563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-022-13741-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shah, Syed Afaq Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2181-8445</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CommuNety: deep learning-based face recognition system for the prediction of cohesive communities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social communities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Weifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, Muhammad Aamir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bais, Abdul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">82(2022), 7 vom: 10. Sept., Seite 10641-10659</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:10</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:10641-10659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-022-13741-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">10</subfield><subfield code="c">09</subfield><subfield code="h">10641-10659</subfield></datafield></record></collection>
|
score |
7.4011307 |