Urban drainage decision model for storm emergency management based on multi-objective optimization
Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was...
Ausführliche Beschreibung
Autor*in: |
Bao, Shitai [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Stochastic environmental research and risk assessment - Springer Berlin Heidelberg, 1999, 37(2022), 3 vom: 18. Okt., Seite 813-829 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2022 ; number:3 ; day:18 ; month:10 ; pages:813-829 |
Links: |
---|
DOI / URN: |
10.1007/s00477-022-02315-x |
---|
Katalog-ID: |
OLC2134275529 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134275529 | ||
003 | DE-627 | ||
005 | 20230506162657.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00477-022-02315-x |2 doi | |
035 | |a (DE-627)OLC2134275529 | ||
035 | |a (DE-He213)s00477-022-02315-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 43.03$jMethoden der Umweltforschung und des Umweltschutzes |2 bkl | ||
084 | |a 38.85$jHydrologie: Allgemeines |2 bkl | ||
084 | |a 58.50$jUmwelttechnik: Allgemeines |2 bkl | ||
084 | |a 52.23$jFluidtechnik |2 bkl | ||
100 | 1 | |a Bao, Shitai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Urban drainage decision model for storm emergency management based on multi-objective optimization |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. | ||
650 | 4 | |a Urban waterlogging | |
650 | 4 | |a Surface water simulation | |
650 | 4 | |a Cellular automata | |
650 | 4 | |a Drainage optimization modeling | |
650 | 4 | |a Multi-objective optimization | |
700 | 1 | |a Lai, Zehui |4 aut | |
700 | 1 | |a Chen, Biao |4 aut | |
700 | 1 | |a Chen, Shunqing |0 (orcid)0000-0001-7794-0840 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Stochastic environmental research and risk assessment |d Springer Berlin Heidelberg, 1999 |g 37(2022), 3 vom: 18. Okt., Seite 813-829 |w (DE-627)269538283 |w (DE-600)1475430-7 |w (DE-576)077885473 |x 1436-3240 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2022 |g number:3 |g day:18 |g month:10 |g pages:813-829 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00477-022-02315-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 43.03$jMethoden der Umweltforschung und des Umweltschutzes |q VZ |0 106416952 |0 (DE-625)106416952 |
936 | b | k | |a 38.85$jHydrologie: Allgemeines |q VZ |0 106421905 |0 (DE-625)106421905 |
936 | b | k | |a 58.50$jUmwelttechnik: Allgemeines |q VZ |0 10641707X |0 (DE-625)10641707X |
936 | b | k | |a 52.23$jFluidtechnik |q VZ |0 106419870 |0 (DE-625)106419870 |
951 | |a AR | ||
952 | |d 37 |j 2022 |e 3 |b 18 |c 10 |h 813-829 |
author_variant |
s b sb z l zl b c bc s c sc |
---|---|
matchkey_str |
article:14363240:2022----::radangdcsomdlosommrecmngmnbsdnu |
hierarchy_sort_str |
2022 |
bklnumber |
43.03$jMethoden der Umweltforschung und des Umweltschutzes 38.85$jHydrologie: Allgemeines 58.50$jUmwelttechnik: Allgemeines 52.23$jFluidtechnik |
publishDate |
2022 |
allfields |
10.1007/s00477-022-02315-x doi (DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Bao, Shitai verfasserin aut Urban drainage decision model for storm emergency management based on multi-objective optimization 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization Lai, Zehui aut Chen, Biao aut Chen, Shunqing (orcid)0000-0001-7794-0840 aut Enthalten in Stochastic environmental research and risk assessment Springer Berlin Heidelberg, 1999 37(2022), 3 vom: 18. Okt., Seite 813-829 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:37 year:2022 number:3 day:18 month:10 pages:813-829 https://doi.org/10.1007/s00477-022-02315-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 37 2022 3 18 10 813-829 |
spelling |
10.1007/s00477-022-02315-x doi (DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Bao, Shitai verfasserin aut Urban drainage decision model for storm emergency management based on multi-objective optimization 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization Lai, Zehui aut Chen, Biao aut Chen, Shunqing (orcid)0000-0001-7794-0840 aut Enthalten in Stochastic environmental research and risk assessment Springer Berlin Heidelberg, 1999 37(2022), 3 vom: 18. Okt., Seite 813-829 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:37 year:2022 number:3 day:18 month:10 pages:813-829 https://doi.org/10.1007/s00477-022-02315-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 37 2022 3 18 10 813-829 |
allfields_unstemmed |
10.1007/s00477-022-02315-x doi (DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Bao, Shitai verfasserin aut Urban drainage decision model for storm emergency management based on multi-objective optimization 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization Lai, Zehui aut Chen, Biao aut Chen, Shunqing (orcid)0000-0001-7794-0840 aut Enthalten in Stochastic environmental research and risk assessment Springer Berlin Heidelberg, 1999 37(2022), 3 vom: 18. Okt., Seite 813-829 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:37 year:2022 number:3 day:18 month:10 pages:813-829 https://doi.org/10.1007/s00477-022-02315-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 37 2022 3 18 10 813-829 |
allfieldsGer |
10.1007/s00477-022-02315-x doi (DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Bao, Shitai verfasserin aut Urban drainage decision model for storm emergency management based on multi-objective optimization 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization Lai, Zehui aut Chen, Biao aut Chen, Shunqing (orcid)0000-0001-7794-0840 aut Enthalten in Stochastic environmental research and risk assessment Springer Berlin Heidelberg, 1999 37(2022), 3 vom: 18. Okt., Seite 813-829 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:37 year:2022 number:3 day:18 month:10 pages:813-829 https://doi.org/10.1007/s00477-022-02315-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 37 2022 3 18 10 813-829 |
allfieldsSound |
10.1007/s00477-022-02315-x doi (DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p DE-627 ger DE-627 rakwb eng 333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Bao, Shitai verfasserin aut Urban drainage decision model for storm emergency management based on multi-objective optimization 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization Lai, Zehui aut Chen, Biao aut Chen, Shunqing (orcid)0000-0001-7794-0840 aut Enthalten in Stochastic environmental research and risk assessment Springer Berlin Heidelberg, 1999 37(2022), 3 vom: 18. Okt., Seite 813-829 (DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 1436-3240 nnns volume:37 year:2022 number:3 day:18 month:10 pages:813-829 https://doi.org/10.1007/s00477-022-02315-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 43.03$jMethoden der Umweltforschung und des Umweltschutzes VZ 106416952 (DE-625)106416952 38.85$jHydrologie: Allgemeines VZ 106421905 (DE-625)106421905 58.50$jUmwelttechnik: Allgemeines VZ 10641707X (DE-625)10641707X 52.23$jFluidtechnik VZ 106419870 (DE-625)106419870 AR 37 2022 3 18 10 813-829 |
language |
English |
source |
Enthalten in Stochastic environmental research and risk assessment 37(2022), 3 vom: 18. Okt., Seite 813-829 volume:37 year:2022 number:3 day:18 month:10 pages:813-829 |
sourceStr |
Enthalten in Stochastic environmental research and risk assessment 37(2022), 3 vom: 18. Okt., Seite 813-829 volume:37 year:2022 number:3 day:18 month:10 pages:813-829 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Stochastic environmental research and risk assessment |
authorswithroles_txt_mv |
Bao, Shitai @@aut@@ Lai, Zehui @@aut@@ Chen, Biao @@aut@@ Chen, Shunqing @@aut@@ |
publishDateDaySort_date |
2022-10-18T00:00:00Z |
hierarchy_top_id |
269538283 |
dewey-sort |
3333.7 |
id |
OLC2134275529 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134275529</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-022-02315-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134275529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00477-022-02315-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Shitai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Urban drainage decision model for storm emergency management based on multi-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban waterlogging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface water simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular automata</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drainage optimization modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Zehui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Biao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shunqing</subfield><subfield code="0">(orcid)0000-0001-7794-0840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Springer Berlin Heidelberg, 1999</subfield><subfield code="g">37(2022), 3 vom: 18. Okt., Seite 813-829</subfield><subfield code="w">(DE-627)269538283</subfield><subfield code="w">(DE-600)1475430-7</subfield><subfield code="w">(DE-576)077885473</subfield><subfield code="x">1436-3240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:813-829</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00477-022-02315-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="q">VZ</subfield><subfield code="0">106416952</subfield><subfield code="0">(DE-625)106416952</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106421905</subfield><subfield code="0">(DE-625)106421905</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">10641707X</subfield><subfield code="0">(DE-625)10641707X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419870</subfield><subfield code="0">(DE-625)106419870</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">813-829</subfield></datafield></record></collection>
|
author |
Bao, Shitai |
spellingShingle |
Bao, Shitai ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Urban waterlogging misc Surface water simulation misc Cellular automata misc Drainage optimization modeling misc Multi-objective optimization Urban drainage decision model for storm emergency management based on multi-objective optimization |
authorStr |
Bao, Shitai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269538283 |
format |
Article |
dewey-ones |
333 - Economics of land & energy 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1436-3240 |
topic_title |
333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl Urban drainage decision model for storm emergency management based on multi-objective optimization Urban waterlogging Surface water simulation Cellular automata Drainage optimization modeling Multi-objective optimization |
topic |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Urban waterlogging misc Surface water simulation misc Cellular automata misc Drainage optimization modeling misc Multi-objective optimization |
topic_unstemmed |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Urban waterlogging misc Surface water simulation misc Cellular automata misc Drainage optimization modeling misc Multi-objective optimization |
topic_browse |
ddc 333.7 ddc 550 bkl 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik misc Urban waterlogging misc Surface water simulation misc Cellular automata misc Drainage optimization modeling misc Multi-objective optimization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Stochastic environmental research and risk assessment |
hierarchy_parent_id |
269538283 |
dewey-tens |
330 - Economics 550 - Earth sciences & geology |
hierarchy_top_title |
Stochastic environmental research and risk assessment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)269538283 (DE-600)1475430-7 (DE-576)077885473 |
title |
Urban drainage decision model for storm emergency management based on multi-objective optimization |
ctrlnum |
(DE-627)OLC2134275529 (DE-He213)s00477-022-02315-x-p |
title_full |
Urban drainage decision model for storm emergency management based on multi-objective optimization |
author_sort |
Bao, Shitai |
journal |
Stochastic environmental research and risk assessment |
journalStr |
Stochastic environmental research and risk assessment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
813 |
author_browse |
Bao, Shitai Lai, Zehui Chen, Biao Chen, Shunqing |
container_volume |
37 |
class |
333.7 VZ 550 VZ 43.03$jMethoden der Umweltforschung und des Umweltschutzes bkl 38.85$jHydrologie: Allgemeines bkl 58.50$jUmwelttechnik: Allgemeines bkl 52.23$jFluidtechnik bkl |
format_se |
Aufsätze |
author-letter |
Bao, Shitai |
doi_str_mv |
10.1007/s00477-022-02315-x |
normlink |
(ORCID)0000-0001-7794-0840 106416952 106421905 10641707X 106419870 |
normlink_prefix_str_mv |
(orcid)0000-0001-7794-0840 106416952 (DE-625)106416952 106421905 (DE-625)106421905 10641707X (DE-625)10641707X 106419870 (DE-625)106419870 |
dewey-full |
333.7 550 |
title_sort |
urban drainage decision model for storm emergency management based on multi-objective optimization |
title_auth |
Urban drainage decision model for storm emergency management based on multi-objective optimization |
abstract |
Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Urban drainage decision model for storm emergency management based on multi-objective optimization |
url |
https://doi.org/10.1007/s00477-022-02315-x |
remote_bool |
false |
author2 |
Lai, Zehui Chen, Biao Chen, Shunqing |
author2Str |
Lai, Zehui Chen, Biao Chen, Shunqing |
ppnlink |
269538283 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00477-022-02315-x |
up_date |
2024-07-04T00:21:01.865Z |
_version_ |
1803605730256748544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134275529</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506162657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00477-022-02315-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134275529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00477-022-02315-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Shitai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Urban drainage decision model for storm emergency management based on multi-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study proposes a solution to prevent urban waterlogging, a challenging environmental issue, by integrating waterlogging prediction and drainage optimization schemes based on cellular automaton and multi-objective optimization theories. An urban waterlogging model for uncertain flow was constructed considering urban surface fragmentation and space complexity. For dynamic simulation, outputs of water depth and flooded areas were projected with inputs of rainfall, soil infiltration, plant interception, gully discharge, and outflow to its neighbors in each cell at any moment. Using a multi-objective optimization approach, the drainage decision model for optimal solutions calculated the maximal amount of water for pumping from flooded zones to candidate reservoirs with minimal energy cost. This integrated approach was successfully applied to the DongHaoChong catchment, an 11 $ km^{2} $ watershed in Guangzhou, southern China and validated by comparing the simulated flood areas with flooded points from two historical rainstorms (August 15, 2013 and June 23, 2014). The RMSE of the maximum waterlogging depth were 26.89 and 78.48 mm, respectively. Therefore, the proposed model was reliable and capable of simulating uncertain flow at any position and moment with minimal data input and parameters in an urban environment. Water-logged area and depth could be predicted based on the given rainfall assuming 1-, 10-, 50-, and 100-year storm data in the study area, and optimal drainage solutions could be obtained and verified. The proposed urban waterlogging prediction and drainage emergency models could optimize decision-making to improve emergency plans and reduce losses due to urban waterlogging.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban waterlogging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface water simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular automata</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drainage optimization modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Zehui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Biao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shunqing</subfield><subfield code="0">(orcid)0000-0001-7794-0840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Stochastic environmental research and risk assessment</subfield><subfield code="d">Springer Berlin Heidelberg, 1999</subfield><subfield code="g">37(2022), 3 vom: 18. Okt., Seite 813-829</subfield><subfield code="w">(DE-627)269538283</subfield><subfield code="w">(DE-600)1475430-7</subfield><subfield code="w">(DE-576)077885473</subfield><subfield code="x">1436-3240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:813-829</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00477-022-02315-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03$jMethoden der Umweltforschung und des Umweltschutzes</subfield><subfield code="q">VZ</subfield><subfield code="0">106416952</subfield><subfield code="0">(DE-625)106416952</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85$jHydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106421905</subfield><subfield code="0">(DE-625)106421905</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50$jUmwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">10641707X</subfield><subfield code="0">(DE-625)10641707X</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.23$jFluidtechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419870</subfield><subfield code="0">(DE-625)106419870</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">813-829</subfield></datafield></record></collection>
|
score |
7.4013624 |