Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems
Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using...
Ausführliche Beschreibung
Autor*in: |
Rabiei, Kobra [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 111(2022), 7 vom: 27. Dez., Seite 6469-6486 |
---|---|
Übergeordnetes Werk: |
volume:111 ; year:2022 ; number:7 ; day:27 ; month:12 ; pages:6469-6486 |
Links: |
---|
DOI / URN: |
10.1007/s11071-022-08177-w |
---|
Katalog-ID: |
OLC2134347384 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134347384 | ||
003 | DE-627 | ||
005 | 20230506163416.0 | ||
007 | tu | ||
008 | 230506s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-022-08177-w |2 doi | |
035 | |a (DE-627)OLC2134347384 | ||
035 | |a (DE-He213)s11071-022-08177-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Rabiei, Kobra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. | ||
650 | 4 | |a Delay fractional optimal control problem | |
650 | 4 | |a Beta function | |
650 | 4 | |a Generalized Mott polynomials | |
700 | 1 | |a Razzaghi, Mohsen |0 (orcid)0000-0002-2189-0802 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 111(2022), 7 vom: 27. Dez., Seite 6469-6486 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:111 |g year:2022 |g number:7 |g day:27 |g month:12 |g pages:6469-6486 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-022-08177-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 111 |j 2022 |e 7 |b 27 |c 12 |h 6469-6486 |
author_variant |
k r kr m r mr |
---|---|
matchkey_str |
article:0924090X:2022----::yrdflcpleucinadeeaiemtplnmasnterplctosnovndly |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11071-022-08177-w doi (DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Rabiei, Kobra verfasserin aut Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. Delay fractional optimal control problem Beta function Generalized Mott polynomials Razzaghi, Mohsen (orcid)0000-0002-2189-0802 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 7 vom: 27. Dez., Seite 6469-6486 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 https://doi.org/10.1007/s11071-022-08177-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 7 27 12 6469-6486 |
spelling |
10.1007/s11071-022-08177-w doi (DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Rabiei, Kobra verfasserin aut Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. Delay fractional optimal control problem Beta function Generalized Mott polynomials Razzaghi, Mohsen (orcid)0000-0002-2189-0802 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 7 vom: 27. Dez., Seite 6469-6486 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 https://doi.org/10.1007/s11071-022-08177-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 7 27 12 6469-6486 |
allfields_unstemmed |
10.1007/s11071-022-08177-w doi (DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Rabiei, Kobra verfasserin aut Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. Delay fractional optimal control problem Beta function Generalized Mott polynomials Razzaghi, Mohsen (orcid)0000-0002-2189-0802 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 7 vom: 27. Dez., Seite 6469-6486 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 https://doi.org/10.1007/s11071-022-08177-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 7 27 12 6469-6486 |
allfieldsGer |
10.1007/s11071-022-08177-w doi (DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Rabiei, Kobra verfasserin aut Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. Delay fractional optimal control problem Beta function Generalized Mott polynomials Razzaghi, Mohsen (orcid)0000-0002-2189-0802 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 7 vom: 27. Dez., Seite 6469-6486 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 https://doi.org/10.1007/s11071-022-08177-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 7 27 12 6469-6486 |
allfieldsSound |
10.1007/s11071-022-08177-w doi (DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Rabiei, Kobra verfasserin aut Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. Delay fractional optimal control problem Beta function Generalized Mott polynomials Razzaghi, Mohsen (orcid)0000-0002-2189-0802 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 111(2022), 7 vom: 27. Dez., Seite 6469-6486 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 https://doi.org/10.1007/s11071-022-08177-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT AR 111 2022 7 27 12 6469-6486 |
language |
English |
source |
Enthalten in Nonlinear dynamics 111(2022), 7 vom: 27. Dez., Seite 6469-6486 volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 |
sourceStr |
Enthalten in Nonlinear dynamics 111(2022), 7 vom: 27. Dez., Seite 6469-6486 volume:111 year:2022 number:7 day:27 month:12 pages:6469-6486 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Delay fractional optimal control problem Beta function Generalized Mott polynomials |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Rabiei, Kobra @@aut@@ Razzaghi, Mohsen @@aut@@ |
publishDateDaySort_date |
2022-12-27T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2134347384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134347384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506163416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-08177-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134347384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-08177-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rabiei, Kobra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delay fractional optimal control problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beta function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized Mott polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Razzaghi, Mohsen</subfield><subfield code="0">(orcid)0000-0002-2189-0802</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">111(2022), 7 vom: 27. Dez., Seite 6469-6486</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:6469-6486</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-08177-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">6469-6486</subfield></datafield></record></collection>
|
author |
Rabiei, Kobra |
spellingShingle |
Rabiei, Kobra ddc 510 ssgn 11 misc Delay fractional optimal control problem misc Beta function misc Generalized Mott polynomials Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
authorStr |
Rabiei, Kobra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems Delay fractional optimal control problem Beta function Generalized Mott polynomials |
topic |
ddc 510 ssgn 11 misc Delay fractional optimal control problem misc Beta function misc Generalized Mott polynomials |
topic_unstemmed |
ddc 510 ssgn 11 misc Delay fractional optimal control problem misc Beta function misc Generalized Mott polynomials |
topic_browse |
ddc 510 ssgn 11 misc Delay fractional optimal control problem misc Beta function misc Generalized Mott polynomials |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
ctrlnum |
(DE-627)OLC2134347384 (DE-He213)s11071-022-08177-w-p |
title_full |
Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
author_sort |
Rabiei, Kobra |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
6469 |
author_browse |
Rabiei, Kobra Razzaghi, Mohsen |
container_volume |
111 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Rabiei, Kobra |
doi_str_mv |
10.1007/s11071-022-08177-w |
normlink |
(ORCID)0000-0002-2189-0802 |
normlink_prefix_str_mv |
(orcid)0000-0002-2189-0802 |
dewey-full |
510 |
title_sort |
hybrid of block-pulse functions and generalized mott polynomials and their applications in solving delay fractional optimal control problems |
title_auth |
Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
abstract |
Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
7 |
title_short |
Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems |
url |
https://doi.org/10.1007/s11071-022-08177-w |
remote_bool |
false |
author2 |
Razzaghi, Mohsen |
author2Str |
Razzaghi, Mohsen |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-022-08177-w |
up_date |
2024-07-04T00:43:01.563Z |
_version_ |
1803607114058301440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134347384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506163416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230506s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-08177-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134347384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-08177-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rabiei, Kobra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid of block-pulse functions and generalized Mott polynomials and their applications in solving delay fractional optimal control problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give the hybrid of block-pulse function and generalized Mott polynomials (HBGMP) and use it to solve delay fractional optimal control problems (DFOCPs). First, we develop a method for computing the exact formula of the Riemann–Liouville fractional integral operator of the HBGMP by using the regularized beta function. Next, the DFOCPs will be transformed into parameter optimization problems. By imposing the optimality conditions, we reduce the problem to algebraic equations. Several examples are given to show the advantages of the method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delay fractional optimal control problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beta function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized Mott polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Razzaghi, Mohsen</subfield><subfield code="0">(orcid)0000-0002-2189-0802</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">111(2022), 7 vom: 27. Dez., Seite 6469-6486</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:27</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:6469-6486</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-08177-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">27</subfield><subfield code="c">12</subfield><subfield code="h">6469-6486</subfield></datafield></record></collection>
|
score |
7.398176 |