A novel machine learning algorithm for interval systems approximation based on artificial neural network
Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large inte...
Ausführliche Beschreibung
Autor*in: |
Zerrougui, Raouf [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent manufacturing - Springer US, 1990, 34(2022), 5 vom: 05. Feb., Seite 2171-2184 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2022 ; number:5 ; day:05 ; month:02 ; pages:2171-2184 |
Links: |
---|
DOI / URN: |
10.1007/s10845-021-01874-0 |
---|
Katalog-ID: |
OLC2134705302 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2134705302 | ||
003 | DE-627 | ||
005 | 20230510163207.0 | ||
007 | tu | ||
008 | 230510s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10845-021-01874-0 |2 doi | |
035 | |a (DE-627)OLC2134705302 | ||
035 | |a (DE-He213)s10845-021-01874-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 004 |q VZ |
100 | 1 | |a Zerrougui, Raouf |e verfasserin |0 (orcid)0000-0003-3840-4986 |4 aut | |
245 | 1 | 0 | |a A novel machine learning algorithm for interval systems approximation based on artificial neural network |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. | ||
650 | 4 | |a Artificial neural network | |
650 | 4 | |a Model order reduction (MOR) | |
650 | 4 | |a Interval system | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Polynomial degree approximation | |
700 | 1 | |a Adamou-Mitiche, Amel B. H. |4 aut | |
700 | 1 | |a Mitiche, Lahcene |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent manufacturing |d Springer US, 1990 |g 34(2022), 5 vom: 05. Feb., Seite 2171-2184 |w (DE-627)130892815 |w (DE-600)1041378-9 |w (DE-576)026321106 |x 0956-5515 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2022 |g number:5 |g day:05 |g month:02 |g pages:2171-2184 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10845-021-01874-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 34 |j 2022 |e 5 |b 05 |c 02 |h 2171-2184 |
author_variant |
r z rz a b h a m abha abham l m lm |
---|---|
matchkey_str |
article:09565515:2022----::nvlahnlannagrtmoitrassesprxmtobsd |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10845-021-01874-0 doi (DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p DE-627 ger DE-627 rakwb eng 620 004 VZ Zerrougui, Raouf verfasserin (orcid)0000-0003-3840-4986 aut A novel machine learning algorithm for interval systems approximation based on artificial neural network 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation Adamou-Mitiche, Amel B. H. aut Mitiche, Lahcene aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 34(2022), 5 vom: 05. Feb., Seite 2171-2184 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 https://doi.org/10.1007/s10845-021-01874-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 34 2022 5 05 02 2171-2184 |
spelling |
10.1007/s10845-021-01874-0 doi (DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p DE-627 ger DE-627 rakwb eng 620 004 VZ Zerrougui, Raouf verfasserin (orcid)0000-0003-3840-4986 aut A novel machine learning algorithm for interval systems approximation based on artificial neural network 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation Adamou-Mitiche, Amel B. H. aut Mitiche, Lahcene aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 34(2022), 5 vom: 05. Feb., Seite 2171-2184 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 https://doi.org/10.1007/s10845-021-01874-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 34 2022 5 05 02 2171-2184 |
allfields_unstemmed |
10.1007/s10845-021-01874-0 doi (DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p DE-627 ger DE-627 rakwb eng 620 004 VZ Zerrougui, Raouf verfasserin (orcid)0000-0003-3840-4986 aut A novel machine learning algorithm for interval systems approximation based on artificial neural network 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation Adamou-Mitiche, Amel B. H. aut Mitiche, Lahcene aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 34(2022), 5 vom: 05. Feb., Seite 2171-2184 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 https://doi.org/10.1007/s10845-021-01874-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 34 2022 5 05 02 2171-2184 |
allfieldsGer |
10.1007/s10845-021-01874-0 doi (DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p DE-627 ger DE-627 rakwb eng 620 004 VZ Zerrougui, Raouf verfasserin (orcid)0000-0003-3840-4986 aut A novel machine learning algorithm for interval systems approximation based on artificial neural network 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation Adamou-Mitiche, Amel B. H. aut Mitiche, Lahcene aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 34(2022), 5 vom: 05. Feb., Seite 2171-2184 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 https://doi.org/10.1007/s10845-021-01874-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 34 2022 5 05 02 2171-2184 |
allfieldsSound |
10.1007/s10845-021-01874-0 doi (DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p DE-627 ger DE-627 rakwb eng 620 004 VZ Zerrougui, Raouf verfasserin (orcid)0000-0003-3840-4986 aut A novel machine learning algorithm for interval systems approximation based on artificial neural network 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation Adamou-Mitiche, Amel B. H. aut Mitiche, Lahcene aut Enthalten in Journal of intelligent manufacturing Springer US, 1990 34(2022), 5 vom: 05. Feb., Seite 2171-2184 (DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 0956-5515 nnns volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 https://doi.org/10.1007/s10845-021-01874-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 34 2022 5 05 02 2171-2184 |
language |
English |
source |
Enthalten in Journal of intelligent manufacturing 34(2022), 5 vom: 05. Feb., Seite 2171-2184 volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 |
sourceStr |
Enthalten in Journal of intelligent manufacturing 34(2022), 5 vom: 05. Feb., Seite 2171-2184 volume:34 year:2022 number:5 day:05 month:02 pages:2171-2184 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent manufacturing |
authorswithroles_txt_mv |
Zerrougui, Raouf @@aut@@ Adamou-Mitiche, Amel B. H. @@aut@@ Mitiche, Lahcene @@aut@@ |
publishDateDaySort_date |
2022-02-05T00:00:00Z |
hierarchy_top_id |
130892815 |
dewey-sort |
3620 |
id |
OLC2134705302 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134705302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510163207.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230510s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-021-01874-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134705302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-021-01874-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zerrougui, Raouf</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3840-4986</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel machine learning algorithm for interval systems approximation based on artificial neural network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model order reduction (MOR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial degree approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adamou-Mitiche, Amel B. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitiche, Lahcene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">34(2022), 5 vom: 05. Feb., Seite 2171-2184</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2171-2184</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-021-01874-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">2171-2184</subfield></datafield></record></collection>
|
author |
Zerrougui, Raouf |
spellingShingle |
Zerrougui, Raouf ddc 620 misc Artificial neural network misc Model order reduction (MOR) misc Interval system misc Artificial intelligence misc Polynomial degree approximation A novel machine learning algorithm for interval systems approximation based on artificial neural network |
authorStr |
Zerrougui, Raouf |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130892815 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0956-5515 |
topic_title |
620 004 VZ A novel machine learning algorithm for interval systems approximation based on artificial neural network Artificial neural network Model order reduction (MOR) Interval system Artificial intelligence Polynomial degree approximation |
topic |
ddc 620 misc Artificial neural network misc Model order reduction (MOR) misc Interval system misc Artificial intelligence misc Polynomial degree approximation |
topic_unstemmed |
ddc 620 misc Artificial neural network misc Model order reduction (MOR) misc Interval system misc Artificial intelligence misc Polynomial degree approximation |
topic_browse |
ddc 620 misc Artificial neural network misc Model order reduction (MOR) misc Interval system misc Artificial intelligence misc Polynomial degree approximation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent manufacturing |
hierarchy_parent_id |
130892815 |
dewey-tens |
620 - Engineering 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent manufacturing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130892815 (DE-600)1041378-9 (DE-576)026321106 |
title |
A novel machine learning algorithm for interval systems approximation based on artificial neural network |
ctrlnum |
(DE-627)OLC2134705302 (DE-He213)s10845-021-01874-0-p |
title_full |
A novel machine learning algorithm for interval systems approximation based on artificial neural network |
author_sort |
Zerrougui, Raouf |
journal |
Journal of intelligent manufacturing |
journalStr |
Journal of intelligent manufacturing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2171 |
author_browse |
Zerrougui, Raouf Adamou-Mitiche, Amel B. H. Mitiche, Lahcene |
container_volume |
34 |
class |
620 004 VZ |
format_se |
Aufsätze |
author-letter |
Zerrougui, Raouf |
doi_str_mv |
10.1007/s10845-021-01874-0 |
normlink |
(ORCID)0000-0003-3840-4986 |
normlink_prefix_str_mv |
(orcid)0000-0003-3840-4986 |
dewey-full |
620 004 |
title_sort |
a novel machine learning algorithm for interval systems approximation based on artificial neural network |
title_auth |
A novel machine learning algorithm for interval systems approximation based on artificial neural network |
abstract |
Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT |
container_issue |
5 |
title_short |
A novel machine learning algorithm for interval systems approximation based on artificial neural network |
url |
https://doi.org/10.1007/s10845-021-01874-0 |
remote_bool |
false |
author2 |
Adamou-Mitiche, Amel B. H. Mitiche, Lahcene |
author2Str |
Adamou-Mitiche, Amel B. H. Mitiche, Lahcene |
ppnlink |
130892815 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10845-021-01874-0 |
up_date |
2024-07-04T02:14:01.294Z |
_version_ |
1803612838998048768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2134705302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510163207.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230510s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10845-021-01874-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2134705302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10845-021-01874-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zerrougui, Raouf</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3840-4986</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel machine learning algorithm for interval systems approximation based on artificial neural network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model order reduction (MOR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial degree approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adamou-Mitiche, Amel B. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitiche, Lahcene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent manufacturing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">34(2022), 5 vom: 05. Feb., Seite 2171-2184</subfield><subfield code="w">(DE-627)130892815</subfield><subfield code="w">(DE-600)1041378-9</subfield><subfield code="w">(DE-576)026321106</subfield><subfield code="x">0956-5515</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2171-2184</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10845-021-01874-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">2171-2184</subfield></datafield></record></collection>
|
score |
7.400695 |