A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier
Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TS...
Ausführliche Beschreibung
Autor*in: |
Sun, Jingru [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2012 |
---|
Anmerkung: |
©2012 by Walter de Gruyter Berlin Boston |
---|
Übergeordnetes Werk: |
Enthalten in: Frequenz - De Gruyter, 1947, 66(2012), 3-4 vom: März, Seite 85-90 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2012 ; number:3-4 ; month:03 ; pages:85-90 |
Links: |
---|
DOI / URN: |
10.1515/freq-2012-0021 |
---|
Katalog-ID: |
OLC2136396242 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2136396242 | ||
003 | DE-627 | ||
005 | 20230810072902.0 | ||
007 | tu | ||
008 | 230810s2012 xx ||||| 00| ||und c | ||
024 | 7 | |a 10.1515/freq-2012-0021 |2 doi | |
035 | |a (DE-627)OLC2136396242 | ||
035 | |a (DE-B1597)freq-2012-0021-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 621.3 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Sun, Jingru |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a ©2012 by Walter de Gruyter Berlin Boston | ||
520 | |a Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. | ||
700 | 1 | |a Cao, Xiaodong |4 aut | |
700 | 1 | |a Wang, Chunhua |4 aut | |
700 | 1 | |a Liu, Jinjiang |4 aut | |
700 | 1 | |a Zhao, Manfeng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frequenz |d De Gruyter, 1947 |g 66(2012), 3-4 vom: März, Seite 85-90 |w (DE-627)12926931X |w (DE-600)80129-X |w (DE-576)014459760 |x 0016-1136 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2012 |g number:3-4 |g month:03 |g pages:85-90 |
856 | 4 | 1 | |u https://doi.org/10.1515/freq-2012-0021 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_132 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_164 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 66 |j 2012 |e 3-4 |c 03 |h 85-90 |
author_variant |
j s js x c xc c w cw j l jl m z mz |
---|---|
matchkey_str |
article:00161136:2012----::lwotghggitasomroscneigurnmdutaiea |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1515/freq-2012-0021 doi (DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p DE-627 ger DE-627 rakwb 621.3 VZ 620 VZ Sun, Jingru verfasserin aut A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier ©2012 by Walter de Gruyter Berlin Boston Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. Cao, Xiaodong aut Wang, Chunhua aut Liu, Jinjiang aut Zhao, Manfeng aut Enthalten in Frequenz De Gruyter, 1947 66(2012), 3-4 vom: März, Seite 85-90 (DE-627)12926931X (DE-600)80129-X (DE-576)014459760 0016-1136 nnns volume:66 year:2012 number:3-4 month:03 pages:85-90 https://doi.org/10.1515/freq-2012-0021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 AR 66 2012 3-4 03 85-90 |
spelling |
10.1515/freq-2012-0021 doi (DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p DE-627 ger DE-627 rakwb 621.3 VZ 620 VZ Sun, Jingru verfasserin aut A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier ©2012 by Walter de Gruyter Berlin Boston Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. Cao, Xiaodong aut Wang, Chunhua aut Liu, Jinjiang aut Zhao, Manfeng aut Enthalten in Frequenz De Gruyter, 1947 66(2012), 3-4 vom: März, Seite 85-90 (DE-627)12926931X (DE-600)80129-X (DE-576)014459760 0016-1136 nnns volume:66 year:2012 number:3-4 month:03 pages:85-90 https://doi.org/10.1515/freq-2012-0021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 AR 66 2012 3-4 03 85-90 |
allfields_unstemmed |
10.1515/freq-2012-0021 doi (DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p DE-627 ger DE-627 rakwb 621.3 VZ 620 VZ Sun, Jingru verfasserin aut A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier ©2012 by Walter de Gruyter Berlin Boston Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. Cao, Xiaodong aut Wang, Chunhua aut Liu, Jinjiang aut Zhao, Manfeng aut Enthalten in Frequenz De Gruyter, 1947 66(2012), 3-4 vom: März, Seite 85-90 (DE-627)12926931X (DE-600)80129-X (DE-576)014459760 0016-1136 nnns volume:66 year:2012 number:3-4 month:03 pages:85-90 https://doi.org/10.1515/freq-2012-0021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 AR 66 2012 3-4 03 85-90 |
allfieldsGer |
10.1515/freq-2012-0021 doi (DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p DE-627 ger DE-627 rakwb 621.3 VZ 620 VZ Sun, Jingru verfasserin aut A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier ©2012 by Walter de Gruyter Berlin Boston Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. Cao, Xiaodong aut Wang, Chunhua aut Liu, Jinjiang aut Zhao, Manfeng aut Enthalten in Frequenz De Gruyter, 1947 66(2012), 3-4 vom: März, Seite 85-90 (DE-627)12926931X (DE-600)80129-X (DE-576)014459760 0016-1136 nnns volume:66 year:2012 number:3-4 month:03 pages:85-90 https://doi.org/10.1515/freq-2012-0021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 AR 66 2012 3-4 03 85-90 |
allfieldsSound |
10.1515/freq-2012-0021 doi (DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p DE-627 ger DE-627 rakwb 621.3 VZ 620 VZ Sun, Jingru verfasserin aut A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier ©2012 by Walter de Gruyter Berlin Boston Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. Cao, Xiaodong aut Wang, Chunhua aut Liu, Jinjiang aut Zhao, Manfeng aut Enthalten in Frequenz De Gruyter, 1947 66(2012), 3-4 vom: März, Seite 85-90 (DE-627)12926931X (DE-600)80129-X (DE-576)014459760 0016-1136 nnns volume:66 year:2012 number:3-4 month:03 pages:85-90 https://doi.org/10.1515/freq-2012-0021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 AR 66 2012 3-4 03 85-90 |
source |
Enthalten in Frequenz 66(2012), 3-4 vom: März, Seite 85-90 volume:66 year:2012 number:3-4 month:03 pages:85-90 |
sourceStr |
Enthalten in Frequenz 66(2012), 3-4 vom: März, Seite 85-90 volume:66 year:2012 number:3-4 month:03 pages:85-90 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
621.3 |
isfreeaccess_bool |
false |
container_title |
Frequenz |
authorswithroles_txt_mv |
Sun, Jingru @@aut@@ Cao, Xiaodong @@aut@@ Wang, Chunhua @@aut@@ Liu, Jinjiang @@aut@@ Zhao, Manfeng @@aut@@ |
publishDateDaySort_date |
2012-03-01T00:00:00Z |
hierarchy_top_id |
12926931X |
dewey-sort |
3621.3 |
id |
OLC2136396242 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2136396242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810072902.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2012 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/freq-2012-0021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2136396242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)freq-2012-0021-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">621.3</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Jingru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">©2012 by Walter de Gruyter Berlin Boston</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinjiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Manfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frequenz</subfield><subfield code="d">De Gruyter, 1947</subfield><subfield code="g">66(2012), 3-4 vom: März, Seite 85-90</subfield><subfield code="w">(DE-627)12926931X</subfield><subfield code="w">(DE-600)80129-X</subfield><subfield code="w">(DE-576)014459760</subfield><subfield code="x">0016-1136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:85-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/freq-2012-0021</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_164</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2012</subfield><subfield code="e">3-4</subfield><subfield code="c">03</subfield><subfield code="h">85-90</subfield></datafield></record></collection>
|
author |
Sun, Jingru |
spellingShingle |
Sun, Jingru ddc 621.3 ddc 620 A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
authorStr |
Sun, Jingru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12926931X |
format |
Article |
dewey-ones |
621 - Applied physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0016-1136 |
topic_title |
621.3 VZ 620 VZ A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
topic |
ddc 621.3 ddc 620 |
topic_unstemmed |
ddc 621.3 ddc 620 |
topic_browse |
ddc 621.3 ddc 620 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Frequenz |
hierarchy_parent_id |
12926931X |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Frequenz |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12926931X (DE-600)80129-X (DE-576)014459760 |
title |
A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
ctrlnum |
(DE-627)OLC2136396242 (DE-B1597)freq-2012-0021-p |
title_full |
A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
author_sort |
Sun, Jingru |
journal |
Frequenz |
journalStr |
Frequenz |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
85 |
author_browse |
Sun, Jingru Cao, Xiaodong Wang, Chunhua Liu, Jinjiang Zhao, Manfeng |
container_volume |
66 |
class |
621.3 VZ 620 VZ |
format_se |
Aufsätze |
author-letter |
Sun, Jingru |
doi_str_mv |
10.1515/freq-2012-0021 |
dewey-full |
621.3 620 |
title_sort |
a low voltage high gain transformer noise-canceling current mode ultrawideband cmos low noise amplifier |
title_auth |
A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
abstract |
Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. ©2012 by Walter de Gruyter Berlin Boston |
abstractGer |
Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. ©2012 by Walter de Gruyter Berlin Boston |
abstract_unstemmed |
Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity. ©2012 by Walter de Gruyter Berlin Boston |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_95 GBV_ILN_132 GBV_ILN_161 GBV_ILN_164 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_2021 GBV_ILN_2048 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier |
url |
https://doi.org/10.1515/freq-2012-0021 |
remote_bool |
false |
author2 |
Cao, Xiaodong Wang, Chunhua Liu, Jinjiang Zhao, Manfeng |
author2Str |
Cao, Xiaodong Wang, Chunhua Liu, Jinjiang Zhao, Manfeng |
ppnlink |
12926931X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/freq-2012-0021 |
up_date |
2024-07-04T05:54:15.306Z |
_version_ |
1803626694895992832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2136396242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810072902.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2012 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/freq-2012-0021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2136396242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)freq-2012-0021-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">621.3</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Jingru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Low Voltage High Gain Transformer Noise-Canceling Current Mode Ultrawideband CMOS Low Noise Amplifier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">©2012 by Walter de Gruyter Berlin Boston</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a novel current mode differential UWB LNA. A common-gate stage with transformer realizes a low noise input matching and produces a current gain. The output of the LNA is differential current, which can avoid the current-to-voltage conversion. The LNA is simulated with TSMC 0.18 μm RF CMOS process. Simulation results show that the max noise figure is only 2.65 dB, transconductance gain is larger than 18.7 dB, input reflection coefficient is lower than -9.9 dB, and third order input intercept point is about 2.8 dBm over 3–5 GHz. With a voltage of 0.8 V, the power consumption is 11 mW. A comparison with conventional UWB LNA shows that this LNA has advantages of low voltage, low noise, high gain, and high linearity.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinjiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Manfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frequenz</subfield><subfield code="d">De Gruyter, 1947</subfield><subfield code="g">66(2012), 3-4 vom: März, Seite 85-90</subfield><subfield code="w">(DE-627)12926931X</subfield><subfield code="w">(DE-600)80129-X</subfield><subfield code="w">(DE-576)014459760</subfield><subfield code="x">0016-1136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:85-90</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/freq-2012-0021</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_164</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2012</subfield><subfield code="e">3-4</subfield><subfield code="c">03</subfield><subfield code="h">85-90</subfield></datafield></record></collection>
|
score |
7.4032135 |