Truncated euler polynomials
Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.
Autor*in: |
Komatsu, Takao [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2018 |
---|
Anmerkung: |
© 2018 Mathematical Institute Slovak Academy of Sciences |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematica Slovaca - De Gruyter, 1976, 68(2018), 3 vom: 18. Mai, Seite 527-536 |
---|---|
Übergeordnetes Werk: |
volume:68 ; year:2018 ; number:3 ; day:18 ; month:05 ; pages:527-536 |
Links: |
---|
DOI / URN: |
10.1515/ms-2017-0122 |
---|
Katalog-ID: |
OLC2138364100 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2138364100 | ||
003 | DE-627 | ||
005 | 20230810100326.0 | ||
007 | tu | ||
008 | 230810s2018 xx ||||| 00| ||und c | ||
024 | 7 | |a 10.1515/ms-2017-0122 |2 doi | |
035 | |a (DE-627)OLC2138364100 | ||
035 | |a (DE-B1597)ms-2017-0122-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Komatsu, Takao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Truncated euler polynomials |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © 2018 Mathematical Institute Slovak Academy of Sciences | ||
520 | |a Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. | ||
700 | 1 | |a Pita-Ruiz, Claudio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematica Slovaca |d De Gruyter, 1976 |g 68(2018), 3 vom: 18. Mai, Seite 527-536 |w (DE-627)129564028 |w (DE-600)223018-5 |w (DE-576)015031500 |x 0139-9918 |7 nnns |
773 | 1 | 8 | |g volume:68 |g year:2018 |g number:3 |g day:18 |g month:05 |g pages:527-536 |
856 | 4 | 1 | |u https://doi.org/10.1515/ms-2017-0122 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 68 |j 2018 |e 3 |b 18 |c 05 |h 527-536 |
author_variant |
t k tk c p r cpr |
---|---|
matchkey_str |
article:01399918:2018----::rnaeelroy |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1515/ms-2017-0122 doi (DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Komatsu, Takao verfasserin aut Truncated euler polynomials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2018 Mathematical Institute Slovak Academy of Sciences Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. Pita-Ruiz, Claudio aut Enthalten in Mathematica Slovaca De Gruyter, 1976 68(2018), 3 vom: 18. Mai, Seite 527-536 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:68 year:2018 number:3 day:18 month:05 pages:527-536 https://doi.org/10.1515/ms-2017-0122 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 68 2018 3 18 05 527-536 |
spelling |
10.1515/ms-2017-0122 doi (DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Komatsu, Takao verfasserin aut Truncated euler polynomials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2018 Mathematical Institute Slovak Academy of Sciences Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. Pita-Ruiz, Claudio aut Enthalten in Mathematica Slovaca De Gruyter, 1976 68(2018), 3 vom: 18. Mai, Seite 527-536 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:68 year:2018 number:3 day:18 month:05 pages:527-536 https://doi.org/10.1515/ms-2017-0122 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 68 2018 3 18 05 527-536 |
allfields_unstemmed |
10.1515/ms-2017-0122 doi (DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Komatsu, Takao verfasserin aut Truncated euler polynomials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2018 Mathematical Institute Slovak Academy of Sciences Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. Pita-Ruiz, Claudio aut Enthalten in Mathematica Slovaca De Gruyter, 1976 68(2018), 3 vom: 18. Mai, Seite 527-536 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:68 year:2018 number:3 day:18 month:05 pages:527-536 https://doi.org/10.1515/ms-2017-0122 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 68 2018 3 18 05 527-536 |
allfieldsGer |
10.1515/ms-2017-0122 doi (DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Komatsu, Takao verfasserin aut Truncated euler polynomials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2018 Mathematical Institute Slovak Academy of Sciences Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. Pita-Ruiz, Claudio aut Enthalten in Mathematica Slovaca De Gruyter, 1976 68(2018), 3 vom: 18. Mai, Seite 527-536 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:68 year:2018 number:3 day:18 month:05 pages:527-536 https://doi.org/10.1515/ms-2017-0122 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 68 2018 3 18 05 527-536 |
allfieldsSound |
10.1515/ms-2017-0122 doi (DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Komatsu, Takao verfasserin aut Truncated euler polynomials 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2018 Mathematical Institute Slovak Academy of Sciences Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. Pita-Ruiz, Claudio aut Enthalten in Mathematica Slovaca De Gruyter, 1976 68(2018), 3 vom: 18. Mai, Seite 527-536 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:68 year:2018 number:3 day:18 month:05 pages:527-536 https://doi.org/10.1515/ms-2017-0122 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 68 2018 3 18 05 527-536 |
source |
Enthalten in Mathematica Slovaca 68(2018), 3 vom: 18. Mai, Seite 527-536 volume:68 year:2018 number:3 day:18 month:05 pages:527-536 |
sourceStr |
Enthalten in Mathematica Slovaca 68(2018), 3 vom: 18. Mai, Seite 527-536 volume:68 year:2018 number:3 day:18 month:05 pages:527-536 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematica Slovaca |
authorswithroles_txt_mv |
Komatsu, Takao @@aut@@ Pita-Ruiz, Claudio @@aut@@ |
publishDateDaySort_date |
2018-05-18T00:00:00Z |
hierarchy_top_id |
129564028 |
dewey-sort |
3510 |
id |
OLC2138364100 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2138364100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810100326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2018 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ms-2017-0122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2138364100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)ms-2017-0122-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komatsu, Takao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Truncated euler polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2018 Mathematical Institute Slovak Academy of Sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pita-Ruiz, Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">De Gruyter, 1976</subfield><subfield code="g">68(2018), 3 vom: 18. Mai, Seite 527-536</subfield><subfield code="w">(DE-627)129564028</subfield><subfield code="w">(DE-600)223018-5</subfield><subfield code="w">(DE-576)015031500</subfield><subfield code="x">0139-9918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:527-536</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/ms-2017-0122</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2018</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">05</subfield><subfield code="h">527-536</subfield></datafield></record></collection>
|
author |
Komatsu, Takao |
spellingShingle |
Komatsu, Takao ddc 510 ssgn 17,1 Truncated euler polynomials |
authorStr |
Komatsu, Takao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129564028 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0139-9918 |
topic_title |
510 VZ 17,1 ssgn Truncated euler polynomials |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematica Slovaca |
hierarchy_parent_id |
129564028 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematica Slovaca |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 |
title |
Truncated euler polynomials |
ctrlnum |
(DE-627)OLC2138364100 (DE-B1597)ms-2017-0122-p |
title_full |
Truncated euler polynomials |
author_sort |
Komatsu, Takao |
journal |
Mathematica Slovaca |
journalStr |
Mathematica Slovaca |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
527 |
author_browse |
Komatsu, Takao Pita-Ruiz, Claudio |
container_volume |
68 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Komatsu, Takao |
doi_str_mv |
10.1515/ms-2017-0122 |
dewey-full |
510 |
title_sort |
truncated euler polynomials |
title_auth |
Truncated euler polynomials |
abstract |
Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. © 2018 Mathematical Institute Slovak Academy of Sciences |
abstractGer |
Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. © 2018 Mathematical Institute Slovak Academy of Sciences |
abstract_unstemmed |
Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. © 2018 Mathematical Institute Slovak Academy of Sciences |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Truncated euler polynomials |
url |
https://doi.org/10.1515/ms-2017-0122 |
remote_bool |
false |
author2 |
Pita-Ruiz, Claudio |
author2Str |
Pita-Ruiz, Claudio |
ppnlink |
129564028 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/ms-2017-0122 |
up_date |
2024-07-03T16:18:28.471Z |
_version_ |
1803575370420584448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2138364100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810100326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2018 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ms-2017-0122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2138364100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)ms-2017-0122-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komatsu, Takao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Truncated euler polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2018 Mathematical Institute Slovak Academy of Sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial $ E_{n} $(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pita-Ruiz, Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">De Gruyter, 1976</subfield><subfield code="g">68(2018), 3 vom: 18. Mai, Seite 527-536</subfield><subfield code="w">(DE-627)129564028</subfield><subfield code="w">(DE-600)223018-5</subfield><subfield code="w">(DE-576)015031500</subfield><subfield code="x">0139-9918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:68</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:527-536</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/ms-2017-0122</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">68</subfield><subfield code="j">2018</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">05</subfield><subfield code="h">527-536</subfield></datafield></record></collection>
|
score |
7.4018145 |