On convergence of regularized modified Newton's method for nonlinear ill-posed problems
Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert sp...
Ausführliche Beschreibung
Autor*in: |
George, Santhosh [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2010 |
---|
Anmerkung: |
© de Gruyter 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inverse and ill-posed problems - Walter de Gruyter GmbH & Co. KG, 1993, 18(2010), 2 vom: Mai, Seite 133-146 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2010 ; number:2 ; month:05 ; pages:133-146 |
Links: |
---|
DOI / URN: |
10.1515/jiip.2010.004 |
---|
Katalog-ID: |
OLC2140619471 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2140619471 | ||
003 | DE-627 | ||
005 | 20230810105723.0 | ||
007 | tu | ||
008 | 230810s2010 xx ||||| 00| ||und c | ||
024 | 7 | |a 10.1515/jiip.2010.004 |2 doi | |
035 | |a (DE-627)OLC2140619471 | ||
035 | |a (DE-B1597)jiip.2010.004-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a George, Santhosh |e verfasserin |4 aut | |
245 | 1 | 0 | |a On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © de Gruyter 2010 | ||
520 | |a Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. | ||
773 | 0 | 8 | |i Enthalten in |t Journal of inverse and ill-posed problems |d Walter de Gruyter GmbH & Co. KG, 1993 |g 18(2010), 2 vom: Mai, Seite 133-146 |w (DE-627)165676728 |w (DE-600)1160989-8 |w (DE-576)04851134X |x 0928-0219 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2010 |g number:2 |g month:05 |g pages:133-146 |
856 | 4 | 1 | |u https://doi.org/10.1515/jiip.2010.004 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_134 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 18 |j 2010 |e 2 |c 05 |h 133-146 |
author_variant |
s g sg |
---|---|
matchkey_str |
article:09280219:2010----::novrecorglrzdoiidetnmtofrol |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1515/jiip.2010.004 doi (DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 11 ssgn George, Santhosh verfasserin aut On convergence of regularized modified Newton's method for nonlinear ill-posed problems 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © de Gruyter 2010 Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. Enthalten in Journal of inverse and ill-posed problems Walter de Gruyter GmbH & Co. KG, 1993 18(2010), 2 vom: Mai, Seite 133-146 (DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X 0928-0219 nnns volume:18 year:2010 number:2 month:05 pages:133-146 https://doi.org/10.1515/jiip.2010.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 AR 18 2010 2 05 133-146 |
spelling |
10.1515/jiip.2010.004 doi (DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 11 ssgn George, Santhosh verfasserin aut On convergence of regularized modified Newton's method for nonlinear ill-posed problems 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © de Gruyter 2010 Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. Enthalten in Journal of inverse and ill-posed problems Walter de Gruyter GmbH & Co. KG, 1993 18(2010), 2 vom: Mai, Seite 133-146 (DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X 0928-0219 nnns volume:18 year:2010 number:2 month:05 pages:133-146 https://doi.org/10.1515/jiip.2010.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 AR 18 2010 2 05 133-146 |
allfields_unstemmed |
10.1515/jiip.2010.004 doi (DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 11 ssgn George, Santhosh verfasserin aut On convergence of regularized modified Newton's method for nonlinear ill-posed problems 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © de Gruyter 2010 Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. Enthalten in Journal of inverse and ill-posed problems Walter de Gruyter GmbH & Co. KG, 1993 18(2010), 2 vom: Mai, Seite 133-146 (DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X 0928-0219 nnns volume:18 year:2010 number:2 month:05 pages:133-146 https://doi.org/10.1515/jiip.2010.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 AR 18 2010 2 05 133-146 |
allfieldsGer |
10.1515/jiip.2010.004 doi (DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 11 ssgn George, Santhosh verfasserin aut On convergence of regularized modified Newton's method for nonlinear ill-posed problems 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © de Gruyter 2010 Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. Enthalten in Journal of inverse and ill-posed problems Walter de Gruyter GmbH & Co. KG, 1993 18(2010), 2 vom: Mai, Seite 133-146 (DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X 0928-0219 nnns volume:18 year:2010 number:2 month:05 pages:133-146 https://doi.org/10.1515/jiip.2010.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 AR 18 2010 2 05 133-146 |
allfieldsSound |
10.1515/jiip.2010.004 doi (DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 11 ssgn George, Santhosh verfasserin aut On convergence of regularized modified Newton's method for nonlinear ill-posed problems 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © de Gruyter 2010 Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. Enthalten in Journal of inverse and ill-posed problems Walter de Gruyter GmbH & Co. KG, 1993 18(2010), 2 vom: Mai, Seite 133-146 (DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X 0928-0219 nnns volume:18 year:2010 number:2 month:05 pages:133-146 https://doi.org/10.1515/jiip.2010.004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 AR 18 2010 2 05 133-146 |
source |
Enthalten in Journal of inverse and ill-posed problems 18(2010), 2 vom: Mai, Seite 133-146 volume:18 year:2010 number:2 month:05 pages:133-146 |
sourceStr |
Enthalten in Journal of inverse and ill-posed problems 18(2010), 2 vom: Mai, Seite 133-146 volume:18 year:2010 number:2 month:05 pages:133-146 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of inverse and ill-posed problems |
authorswithroles_txt_mv |
George, Santhosh @@aut@@ |
publishDateDaySort_date |
2010-05-01T00:00:00Z |
hierarchy_top_id |
165676728 |
dewey-sort |
3510 |
id |
OLC2140619471 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2140619471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810105723.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2010 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jiip.2010.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2140619471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)jiip.2010.004-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On convergence of regularized modified Newton's method for nonlinear ill-posed problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© de Gruyter 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inverse and ill-posed problems</subfield><subfield code="d">Walter de Gruyter GmbH & Co. KG, 1993</subfield><subfield code="g">18(2010), 2 vom: Mai, Seite 133-146</subfield><subfield code="w">(DE-627)165676728</subfield><subfield code="w">(DE-600)1160989-8</subfield><subfield code="w">(DE-576)04851134X</subfield><subfield code="x">0928-0219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:133-146</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/jiip.2010.004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">05</subfield><subfield code="h">133-146</subfield></datafield></record></collection>
|
author |
George, Santhosh |
spellingShingle |
George, Santhosh ddc 510 ssgn 11 On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
authorStr |
George, Santhosh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165676728 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0928-0219 |
topic_title |
510 VZ 11 ssgn On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
topic |
ddc 510 ssgn 11 |
topic_unstemmed |
ddc 510 ssgn 11 |
topic_browse |
ddc 510 ssgn 11 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of inverse and ill-posed problems |
hierarchy_parent_id |
165676728 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inverse and ill-posed problems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165676728 (DE-600)1160989-8 (DE-576)04851134X |
title |
On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
ctrlnum |
(DE-627)OLC2140619471 (DE-B1597)jiip.2010.004-p |
title_full |
On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
author_sort |
George, Santhosh |
journal |
Journal of inverse and ill-posed problems |
journalStr |
Journal of inverse and ill-posed problems |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
133 |
author_browse |
George, Santhosh |
container_volume |
18 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
George, Santhosh |
doi_str_mv |
10.1515/jiip.2010.004 |
dewey-full |
510 |
title_sort |
on convergence of regularized modified newton's method for nonlinear ill-posed problems |
title_auth |
On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
abstract |
Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. © de Gruyter 2010 |
abstractGer |
Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. © de Gruyter 2010 |
abstract_unstemmed |
Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order. © de Gruyter 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_60 GBV_ILN_70 GBV_ILN_134 GBV_ILN_267 GBV_ILN_2020 GBV_ILN_4277 |
container_issue |
2 |
title_short |
On convergence of regularized modified Newton's method for nonlinear ill-posed problems |
url |
https://doi.org/10.1515/jiip.2010.004 |
remote_bool |
false |
ppnlink |
165676728 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/jiip.2010.004 |
up_date |
2024-07-04T00:02:47.311Z |
_version_ |
1803604582530547712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2140619471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810105723.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230810s2010 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jiip.2010.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2140619471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)jiip.2010.004-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">George, Santhosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On convergence of regularized modified Newton's method for nonlinear ill-posed problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© de Gruyter 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we consider regularized modified Newton's method for approximately solving the nonlinear ill-posed problem F(x) = y, where the right hand side is replaced by noisy data $ y^{δ} $ ∈ Y with ‖y – $ y^{δ} $ ‖ ≤ δ and F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X and Y. Under the assumption that Fréchet derivative F′ of F is Lipschitz continuous, a choice of the regularization parameter and a stopping rule based on a majorizing sequence are presented. We prove that under a general source condition on , the error between the regularized approximation and the solution of optimal order.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inverse and ill-posed problems</subfield><subfield code="d">Walter de Gruyter GmbH & Co. KG, 1993</subfield><subfield code="g">18(2010), 2 vom: Mai, Seite 133-146</subfield><subfield code="w">(DE-627)165676728</subfield><subfield code="w">(DE-600)1160989-8</subfield><subfield code="w">(DE-576)04851134X</subfield><subfield code="x">0928-0219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:133-146</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/jiip.2010.004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">05</subfield><subfield code="h">133-146</subfield></datafield></record></collection>
|
score |
7.4014387 |