Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type
Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its...
Ausführliche Beschreibung
Autor*in: |
Ando, Hiroshi [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2017 |
---|
Anmerkung: |
© 2019 Walter de Gruyter GmbH, Berlin/Boston |
---|
Übergeordnetes Werk: |
Enthalten in: Journal für die reine und angewandte Mathematik - De Gruyter, 1826, 2020(2017), 758 vom: 17. Nov., Seite 223-251 |
---|---|
Übergeordnetes Werk: |
volume:2020 ; year:2017 ; number:758 ; day:17 ; month:11 ; pages:223-251 |
Links: |
---|
DOI / URN: |
10.1515/crelle-2017-0047 |
---|
Katalog-ID: |
OLC2141981530 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2141981530 | ||
003 | DE-627 | ||
005 | 20230811130636.0 | ||
007 | tu | ||
008 | 230811s2017 xx ||||| 00| ||und c | ||
024 | 7 | |a 10.1515/crelle-2017-0047 |2 doi | |
035 | |a (DE-627)OLC2141981530 | ||
035 | |a (DE-B1597)crelle-2017-0047-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ando, Hiroshi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © 2019 Walter de Gruyter GmbH, Berlin/Boston | ||
520 | |a Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. | ||
700 | 1 | |a Matsuzawa, Yasumichi |4 aut | |
700 | 1 | |a Thom, Andreas |4 aut | |
700 | 1 | |a Törnquist, Asger |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal für die reine und angewandte Mathematik |d De Gruyter, 1826 |g 2020(2017), 758 vom: 17. Nov., Seite 223-251 |w (DE-627)129078824 |w (DE-600)3079-X |w (DE-576)014411393 |x 0075-4102 |7 nnns |
773 | 1 | 8 | |g volume:2020 |g year:2017 |g number:758 |g day:17 |g month:11 |g pages:223-251 |
856 | 4 | 1 | |u https://doi.org/10.1515/crelle-2017-0047 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 2020 |j 2017 |e 758 |b 17 |c 11 |h 223-251 |
author_variant |
h a ha y m ym a t at a t at |
---|---|
matchkey_str |
article:00754102:2017----::ntrzbltmuenksifcoiainnpls |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1515/crelle-2017-0047 doi (DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Ando, Hiroshi verfasserin aut Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2019 Walter de Gruyter GmbH, Berlin/Boston Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. Matsuzawa, Yasumichi aut Thom, Andreas aut Törnquist, Asger aut Enthalten in Journal für die reine und angewandte Mathematik De Gruyter, 1826 2020(2017), 758 vom: 17. Nov., Seite 223-251 (DE-627)129078824 (DE-600)3079-X (DE-576)014411393 0075-4102 nnns volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 https://doi.org/10.1515/crelle-2017-0047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 AR 2020 2017 758 17 11 223-251 |
spelling |
10.1515/crelle-2017-0047 doi (DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Ando, Hiroshi verfasserin aut Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2019 Walter de Gruyter GmbH, Berlin/Boston Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. Matsuzawa, Yasumichi aut Thom, Andreas aut Törnquist, Asger aut Enthalten in Journal für die reine und angewandte Mathematik De Gruyter, 1826 2020(2017), 758 vom: 17. Nov., Seite 223-251 (DE-627)129078824 (DE-600)3079-X (DE-576)014411393 0075-4102 nnns volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 https://doi.org/10.1515/crelle-2017-0047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 AR 2020 2017 758 17 11 223-251 |
allfields_unstemmed |
10.1515/crelle-2017-0047 doi (DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Ando, Hiroshi verfasserin aut Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2019 Walter de Gruyter GmbH, Berlin/Boston Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. Matsuzawa, Yasumichi aut Thom, Andreas aut Törnquist, Asger aut Enthalten in Journal für die reine und angewandte Mathematik De Gruyter, 1826 2020(2017), 758 vom: 17. Nov., Seite 223-251 (DE-627)129078824 (DE-600)3079-X (DE-576)014411393 0075-4102 nnns volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 https://doi.org/10.1515/crelle-2017-0047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 AR 2020 2017 758 17 11 223-251 |
allfieldsGer |
10.1515/crelle-2017-0047 doi (DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Ando, Hiroshi verfasserin aut Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2019 Walter de Gruyter GmbH, Berlin/Boston Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. Matsuzawa, Yasumichi aut Thom, Andreas aut Törnquist, Asger aut Enthalten in Journal für die reine und angewandte Mathematik De Gruyter, 1826 2020(2017), 758 vom: 17. Nov., Seite 223-251 (DE-627)129078824 (DE-600)3079-X (DE-576)014411393 0075-4102 nnns volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 https://doi.org/10.1515/crelle-2017-0047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 AR 2020 2017 758 17 11 223-251 |
allfieldsSound |
10.1515/crelle-2017-0047 doi (DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p DE-627 ger DE-627 rakwb 510 VZ 510 VZ 17,1 ssgn Ando, Hiroshi verfasserin aut Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2019 Walter de Gruyter GmbH, Berlin/Boston Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. Matsuzawa, Yasumichi aut Thom, Andreas aut Törnquist, Asger aut Enthalten in Journal für die reine und angewandte Mathematik De Gruyter, 1826 2020(2017), 758 vom: 17. Nov., Seite 223-251 (DE-627)129078824 (DE-600)3079-X (DE-576)014411393 0075-4102 nnns volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 https://doi.org/10.1515/crelle-2017-0047 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 AR 2020 2017 758 17 11 223-251 |
source |
Enthalten in Journal für die reine und angewandte Mathematik 2020(2017), 758 vom: 17. Nov., Seite 223-251 volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 |
sourceStr |
Enthalten in Journal für die reine und angewandte Mathematik 2020(2017), 758 vom: 17. Nov., Seite 223-251 volume:2020 year:2017 number:758 day:17 month:11 pages:223-251 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal für die reine und angewandte Mathematik |
authorswithroles_txt_mv |
Ando, Hiroshi @@aut@@ Matsuzawa, Yasumichi @@aut@@ Thom, Andreas @@aut@@ Törnquist, Asger @@aut@@ |
publishDateDaySort_date |
2017-11-17T00:00:00Z |
hierarchy_top_id |
129078824 |
dewey-sort |
3510 |
id |
OLC2141981530 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2141981530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230811130636.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230811s2017 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/crelle-2017-0047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2141981530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)crelle-2017-0047-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ando, Hiroshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2019 Walter de Gruyter GmbH, Berlin/Boston</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuzawa, Yasumichi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thom, Andreas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Törnquist, Asger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal für die reine und angewandte Mathematik</subfield><subfield code="d">De Gruyter, 1826</subfield><subfield code="g">2020(2017), 758 vom: 17. Nov., Seite 223-251</subfield><subfield code="w">(DE-627)129078824</subfield><subfield code="w">(DE-600)3079-X</subfield><subfield code="w">(DE-576)014411393</subfield><subfield code="x">0075-4102</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:758</subfield><subfield code="g">day:17</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:223-251</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/crelle-2017-0047</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2017</subfield><subfield code="e">758</subfield><subfield code="b">17</subfield><subfield code="c">11</subfield><subfield code="h">223-251</subfield></datafield></record></collection>
|
author |
Ando, Hiroshi |
spellingShingle |
Ando, Hiroshi ddc 510 ssgn 17,1 Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
authorStr |
Ando, Hiroshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129078824 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0075-4102 |
topic_title |
510 VZ 17,1 ssgn Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal für die reine und angewandte Mathematik |
hierarchy_parent_id |
129078824 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal für die reine und angewandte Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129078824 (DE-600)3079-X (DE-576)014411393 |
title |
Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
ctrlnum |
(DE-627)OLC2141981530 (DE-B1597)crelle-2017-0047-p |
title_full |
Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
author_sort |
Ando, Hiroshi |
journal |
Journal für die reine und angewandte Mathematik |
journalStr |
Journal für die reine und angewandte Mathematik |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
223 |
author_browse |
Ando, Hiroshi Matsuzawa, Yasumichi Thom, Andreas Törnquist, Asger |
container_volume |
2020 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ando, Hiroshi |
doi_str_mv |
10.1515/crelle-2017-0047 |
dewey-full |
510 |
title_sort |
unitarizability, maurey–nikishin factorization, and polish groups of finite type |
title_auth |
Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
abstract |
Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. © 2019 Walter de Gruyter GmbH, Berlin/Boston |
abstractGer |
Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. © 2019 Walter de Gruyter GmbH, Berlin/Boston |
abstract_unstemmed |
Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space. © 2019 Walter de Gruyter GmbH, Berlin/Boston |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4311 GBV_ILN_4318 GBV_ILN_4323 |
container_issue |
758 |
title_short |
Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type |
url |
https://doi.org/10.1515/crelle-2017-0047 |
remote_bool |
false |
author2 |
Matsuzawa, Yasumichi Thom, Andreas Törnquist, Asger |
author2Str |
Matsuzawa, Yasumichi Thom, Andreas Törnquist, Asger |
ppnlink |
129078824 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/crelle-2017-0047 |
up_date |
2024-07-04T03:19:35.889Z |
_version_ |
1803616964728324096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2141981530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230811130636.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230811s2017 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/crelle-2017-0047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2141981530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)crelle-2017-0047-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ando, Hiroshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2019 Walter de Gruyter GmbH, Berlin/Boston</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let Γ be a countable discrete group, and let {\pi\colon\Gamma\to{\rm{GL}}(H)} be a representation of Γ by invertible operators on a separable Hilbert space H. We show that the semidirect product group {G=H\rtimes_{\pi}\Gamma} is SIN (G admits a two-sided invariant metric compatible with its topology) and unitarily representable (G embeds into the unitary group {\mathcal{U}(\ell^{2}(\mathbb{N}))} ) if and only if π is uniformly bounded, and that π is unitarizable if and only if G is of finite type, that is, G embeds into the unitary group of a {\mathrm{II}_{1}} -factor. Consequently, we show that a unitarily representable Polish SIN group need not be of finite type, answering a question of Sorin Popa. The key point in our argument is an equivariant version of the Maurey–Nikishin factorization theorem for continuous maps from a Hilbert space to the space {L^{0}(X,m)} of all measurable maps on a probability space.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuzawa, Yasumichi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thom, Andreas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Törnquist, Asger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal für die reine und angewandte Mathematik</subfield><subfield code="d">De Gruyter, 1826</subfield><subfield code="g">2020(2017), 758 vom: 17. Nov., Seite 223-251</subfield><subfield code="w">(DE-627)129078824</subfield><subfield code="w">(DE-600)3079-X</subfield><subfield code="w">(DE-576)014411393</subfield><subfield code="x">0075-4102</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:758</subfield><subfield code="g">day:17</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:223-251</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/crelle-2017-0047</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2017</subfield><subfield code="e">758</subfield><subfield code="b">17</subfield><subfield code="c">11</subfield><subfield code="h">223-251</subfield></datafield></record></collection>
|
score |
7.401231 |