Sequence selection properties in $ C_{p} $(X) with the double ideals
Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω,...
Ausführliche Beschreibung
Autor*in: |
Singh, Sumit [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Anmerkung: |
© 2021 Mathematical Institute Slovak Academy of Sciences |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematica Slovaca - De Gruyter, 1976, 71(2021), 1 vom: 29. Jan., Seite 147-154 |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2021 ; number:1 ; day:29 ; month:01 ; pages:147-154 |
Links: |
---|
DOI / URN: |
10.1515/ms-2017-0458 |
---|
Katalog-ID: |
OLC2142425429 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2142425429 | ||
003 | DE-627 | ||
005 | 20230813104916.0 | ||
007 | tu | ||
008 | 230813s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1515/ms-2017-0458 |2 doi | |
035 | |a (DE-627)OLC2142425429 | ||
035 | |a (DE-B1597)ms-2017-0458-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Singh, Sumit |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sequence selection properties in $ C_{p} $(X) with the double ideals |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © 2021 Mathematical Institute Slovak Academy of Sciences | ||
520 | |a Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties ( , -α1) and ( , -α4) of $ C_{p} $(X) using the double ideals, where and are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of ( , -α1) and ( , -α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals and , we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have ( , -α1) and ( , -α4) properties. | ||
700 | 1 | |a Tyagi, Brij K. |4 aut | |
700 | 1 | |a Bhardwaj, Manoj |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematica Slovaca |d De Gruyter, 1976 |g 71(2021), 1 vom: 29. Jan., Seite 147-154 |w (DE-627)129564028 |w (DE-600)223018-5 |w (DE-576)015031500 |x 0139-9918 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2021 |g number:1 |g day:29 |g month:01 |g pages:147-154 |
856 | 4 | 1 | |u https://doi.org/10.1515/ms-2017-0458 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 71 |j 2021 |e 1 |b 29 |c 01 |h 147-154 |
author_variant |
s s ss b k t bk bkt m b mb |
---|---|
matchkey_str |
article:01399918:2021----::euneeetopoeteicpwtt |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1515/ms-2017-0458 doi (DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Singh, Sumit verfasserin aut Sequence selection properties in $ C_{p} $(X) with the double ideals 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2021 Mathematical Institute Slovak Academy of Sciences Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. Tyagi, Brij K. aut Bhardwaj, Manoj aut Enthalten in Mathematica Slovaca De Gruyter, 1976 71(2021), 1 vom: 29. Jan., Seite 147-154 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:71 year:2021 number:1 day:29 month:01 pages:147-154 https://doi.org/10.1515/ms-2017-0458 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 71 2021 1 29 01 147-154 |
spelling |
10.1515/ms-2017-0458 doi (DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Singh, Sumit verfasserin aut Sequence selection properties in $ C_{p} $(X) with the double ideals 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2021 Mathematical Institute Slovak Academy of Sciences Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. Tyagi, Brij K. aut Bhardwaj, Manoj aut Enthalten in Mathematica Slovaca De Gruyter, 1976 71(2021), 1 vom: 29. Jan., Seite 147-154 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:71 year:2021 number:1 day:29 month:01 pages:147-154 https://doi.org/10.1515/ms-2017-0458 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 71 2021 1 29 01 147-154 |
allfields_unstemmed |
10.1515/ms-2017-0458 doi (DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Singh, Sumit verfasserin aut Sequence selection properties in $ C_{p} $(X) with the double ideals 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2021 Mathematical Institute Slovak Academy of Sciences Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. Tyagi, Brij K. aut Bhardwaj, Manoj aut Enthalten in Mathematica Slovaca De Gruyter, 1976 71(2021), 1 vom: 29. Jan., Seite 147-154 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:71 year:2021 number:1 day:29 month:01 pages:147-154 https://doi.org/10.1515/ms-2017-0458 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 71 2021 1 29 01 147-154 |
allfieldsGer |
10.1515/ms-2017-0458 doi (DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Singh, Sumit verfasserin aut Sequence selection properties in $ C_{p} $(X) with the double ideals 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2021 Mathematical Institute Slovak Academy of Sciences Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. Tyagi, Brij K. aut Bhardwaj, Manoj aut Enthalten in Mathematica Slovaca De Gruyter, 1976 71(2021), 1 vom: 29. Jan., Seite 147-154 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:71 year:2021 number:1 day:29 month:01 pages:147-154 https://doi.org/10.1515/ms-2017-0458 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 71 2021 1 29 01 147-154 |
allfieldsSound |
10.1515/ms-2017-0458 doi (DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Singh, Sumit verfasserin aut Sequence selection properties in $ C_{p} $(X) with the double ideals 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © 2021 Mathematical Institute Slovak Academy of Sciences Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. Tyagi, Brij K. aut Bhardwaj, Manoj aut Enthalten in Mathematica Slovaca De Gruyter, 1976 71(2021), 1 vom: 29. Jan., Seite 147-154 (DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 0139-9918 nnns volume:71 year:2021 number:1 day:29 month:01 pages:147-154 https://doi.org/10.1515/ms-2017-0458 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 AR 71 2021 1 29 01 147-154 |
language |
English |
source |
Enthalten in Mathematica Slovaca 71(2021), 1 vom: 29. Jan., Seite 147-154 volume:71 year:2021 number:1 day:29 month:01 pages:147-154 |
sourceStr |
Enthalten in Mathematica Slovaca 71(2021), 1 vom: 29. Jan., Seite 147-154 volume:71 year:2021 number:1 day:29 month:01 pages:147-154 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematica Slovaca |
authorswithroles_txt_mv |
Singh, Sumit @@aut@@ Tyagi, Brij K. @@aut@@ Bhardwaj, Manoj @@aut@@ |
publishDateDaySort_date |
2021-01-29T00:00:00Z |
hierarchy_top_id |
129564028 |
dewey-sort |
3510 |
id |
OLC2142425429 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2142425429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230813104916.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230813s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ms-2017-0458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2142425429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)ms-2017-0458-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Sumit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sequence selection properties in $ C_{p} $(X) with the double ideals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2021 Mathematical Institute Slovak Academy of Sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyagi, Brij K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhardwaj, Manoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">De Gruyter, 1976</subfield><subfield code="g">71(2021), 1 vom: 29. Jan., Seite 147-154</subfield><subfield code="w">(DE-627)129564028</subfield><subfield code="w">(DE-600)223018-5</subfield><subfield code="w">(DE-576)015031500</subfield><subfield code="x">0139-9918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:147-154</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/ms-2017-0458</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">147-154</subfield></datafield></record></collection>
|
author |
Singh, Sumit |
spellingShingle |
Singh, Sumit ddc 510 ssgn 17,1 Sequence selection properties in $ C_{p} $(X) with the double ideals |
authorStr |
Singh, Sumit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129564028 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0139-9918 |
topic_title |
510 VZ 17,1 ssgn Sequence selection properties in $ C_{p} $(X) with the double ideals |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematica Slovaca |
hierarchy_parent_id |
129564028 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematica Slovaca |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129564028 (DE-600)223018-5 (DE-576)015031500 |
title |
Sequence selection properties in $ C_{p} $(X) with the double ideals |
ctrlnum |
(DE-627)OLC2142425429 (DE-B1597)ms-2017-0458-p |
title_full |
Sequence selection properties in $ C_{p} $(X) with the double ideals |
author_sort |
Singh, Sumit |
journal |
Mathematica Slovaca |
journalStr |
Mathematica Slovaca |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
147 |
author_browse |
Singh, Sumit Tyagi, Brij K. Bhardwaj, Manoj |
container_volume |
71 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Singh, Sumit |
doi_str_mv |
10.1515/ms-2017-0458 |
dewey-full |
510 |
title_sort |
sequence selection properties in $ c_{p} $(x) with the double ideals |
title_auth |
Sequence selection properties in $ C_{p} $(X) with the double ideals |
abstract |
Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. © 2021 Mathematical Institute Slovak Academy of Sciences |
abstractGer |
Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. © 2021 Mathematical Institute Slovak Academy of Sciences |
abstract_unstemmed |
Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties. © 2021 Mathematical Institute Slovak Academy of Sciences |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Sequence selection properties in $ C_{p} $(X) with the double ideals |
url |
https://doi.org/10.1515/ms-2017-0458 |
remote_bool |
false |
author2 |
Tyagi, Brij K. Bhardwaj, Manoj |
author2Str |
Tyagi, Brij K. Bhardwaj, Manoj |
ppnlink |
129564028 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1515/ms-2017-0458 |
up_date |
2024-07-04T04:14:06.808Z |
_version_ |
1803620394530242560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2142425429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230813104916.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230813s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ms-2017-0458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2142425429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)ms-2017-0458-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Sumit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sequence selection properties in $ C_{p} $(X) with the double ideals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© 2021 Mathematical Institute Slovak Academy of Sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of $ C_{p} $(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local $ α_{i} $-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of $ C_{p} $(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which $ C_{p} $(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyagi, Brij K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhardwaj, Manoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">De Gruyter, 1976</subfield><subfield code="g">71(2021), 1 vom: 29. Jan., Seite 147-154</subfield><subfield code="w">(DE-627)129564028</subfield><subfield code="w">(DE-600)223018-5</subfield><subfield code="w">(DE-576)015031500</subfield><subfield code="x">0139-9918</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:147-154</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1515/ms-2017-0458</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">147-154</subfield></datafield></record></collection>
|
score |
7.402793 |