A two-phase filtering of discriminative shapelets learning for time series classification

Abstract Compared to the full-length methods for time series classification, shapelet-based methods acquire better interpretation, higher efficiency and precision since shapelets are discriminative features that well represent a time series. However, because of the large number of shapelets candidat...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Li, Chen [verfasserIn]

Wan, Yuan

Zhang, Wenjing

Li, Huanhuan

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Sparse group lasso

Shapelets

Extreme key points

Group sparsity degree

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Springer US, 1991, 53(2022), 11 vom: 17. Okt., Seite 13815-13833

Übergeordnetes Werk:

volume:53 ; year:2022 ; number:11 ; day:17 ; month:10 ; pages:13815-13833

Links:

Volltext

DOI / URN:

10.1007/s10489-022-04043-9

Katalog-ID:

OLC2143603231

Nicht das Richtige dabei?

Schreiben Sie uns!