A hybrid framework for multivariate long-sequence time series forecasting

Abstract Time series forecasting provides insights into the far future by utilizing the available history observations. Recent studies have demonstrated the superiority of transformer-based models in dealing with multivariate long-sequence time series forecasting (MLTSF). However, the data complexit...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Xiaohu [verfasserIn]

Wang, Yong

Peng, Jianjian

Zhang, Zhicheng

Tang, Xueliang

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Time series forecasting

Time sequence decomposition

Graph attention network

Interactive learning

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Springer US, 1991, 53(2022), 11 vom: 13. Okt., Seite 13549-13568

Übergeordnetes Werk:

volume:53 ; year:2022 ; number:11 ; day:13 ; month:10 ; pages:13549-13568

Links:

Volltext

DOI / URN:

10.1007/s10489-022-04110-1

Katalog-ID:

OLC2143603398

Nicht das Richtige dabei?

Schreiben Sie uns!