Regularity results for a free interface problem with Hölder coefficients
Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study t...
Ausführliche Beschreibung
Autor*in: |
Esposito, L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Calculus of variations and partial differential equations - Springer Berlin Heidelberg, 1993, 62(2023), 5 vom: 22. Mai |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2023 ; number:5 ; day:22 ; month:05 |
Links: |
---|
DOI / URN: |
10.1007/s00526-023-02490-x |
---|
Katalog-ID: |
OLC2143756151 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2143756151 | ||
003 | DE-627 | ||
005 | 20240118091610.0 | ||
007 | tu | ||
008 | 240118s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00526-023-02490-x |2 doi | |
035 | |a (DE-627)OLC2143756151 | ||
035 | |a (DE-He213)s00526-023-02490-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Esposito, L. |e verfasserin |0 (orcid)0000-0003-1733-8449 |4 aut | |
245 | 1 | 0 | |a Regularity results for a free interface problem with Hölder coefficients |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. | ||
700 | 1 | |a Lamberti, L. |0 (orcid)0000-0002-2649-6011 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Calculus of variations and partial differential equations |d Springer Berlin Heidelberg, 1993 |g 62(2023), 5 vom: 22. Mai |w (DE-627)165669977 |w (DE-600)1144181-1 |w (DE-576)033045690 |x 0944-2669 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2023 |g number:5 |g day:22 |g month:05 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00526-023-02490-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 62 |j 2023 |e 5 |b 22 |c 05 |
author_variant |
l e le l l ll |
---|---|
matchkey_str |
article:09442669:2023----::euaiyeutfrfeitraerbewt |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00526-023-02490-x doi (DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Esposito, L. verfasserin (orcid)0000-0003-1733-8449 aut Regularity results for a free interface problem with Hölder coefficients 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. Lamberti, L. (orcid)0000-0002-2649-6011 aut Enthalten in Calculus of variations and partial differential equations Springer Berlin Heidelberg, 1993 62(2023), 5 vom: 22. Mai (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:62 year:2023 number:5 day:22 month:05 https://doi.org/10.1007/s00526-023-02490-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 62 2023 5 22 05 |
spelling |
10.1007/s00526-023-02490-x doi (DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Esposito, L. verfasserin (orcid)0000-0003-1733-8449 aut Regularity results for a free interface problem with Hölder coefficients 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. Lamberti, L. (orcid)0000-0002-2649-6011 aut Enthalten in Calculus of variations and partial differential equations Springer Berlin Heidelberg, 1993 62(2023), 5 vom: 22. Mai (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:62 year:2023 number:5 day:22 month:05 https://doi.org/10.1007/s00526-023-02490-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 62 2023 5 22 05 |
allfields_unstemmed |
10.1007/s00526-023-02490-x doi (DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Esposito, L. verfasserin (orcid)0000-0003-1733-8449 aut Regularity results for a free interface problem with Hölder coefficients 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. Lamberti, L. (orcid)0000-0002-2649-6011 aut Enthalten in Calculus of variations and partial differential equations Springer Berlin Heidelberg, 1993 62(2023), 5 vom: 22. Mai (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:62 year:2023 number:5 day:22 month:05 https://doi.org/10.1007/s00526-023-02490-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 62 2023 5 22 05 |
allfieldsGer |
10.1007/s00526-023-02490-x doi (DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Esposito, L. verfasserin (orcid)0000-0003-1733-8449 aut Regularity results for a free interface problem with Hölder coefficients 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. Lamberti, L. (orcid)0000-0002-2649-6011 aut Enthalten in Calculus of variations and partial differential equations Springer Berlin Heidelberg, 1993 62(2023), 5 vom: 22. Mai (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:62 year:2023 number:5 day:22 month:05 https://doi.org/10.1007/s00526-023-02490-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 62 2023 5 22 05 |
allfieldsSound |
10.1007/s00526-023-02490-x doi (DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Esposito, L. verfasserin (orcid)0000-0003-1733-8449 aut Regularity results for a free interface problem with Hölder coefficients 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2023 Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. Lamberti, L. (orcid)0000-0002-2649-6011 aut Enthalten in Calculus of variations and partial differential equations Springer Berlin Heidelberg, 1993 62(2023), 5 vom: 22. Mai (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:62 year:2023 number:5 day:22 month:05 https://doi.org/10.1007/s00526-023-02490-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 62 2023 5 22 05 |
language |
English |
source |
Enthalten in Calculus of variations and partial differential equations 62(2023), 5 vom: 22. Mai volume:62 year:2023 number:5 day:22 month:05 |
sourceStr |
Enthalten in Calculus of variations and partial differential equations 62(2023), 5 vom: 22. Mai volume:62 year:2023 number:5 day:22 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Calculus of variations and partial differential equations |
authorswithroles_txt_mv |
Esposito, L. @@aut@@ Lamberti, L. @@aut@@ |
publishDateDaySort_date |
2023-05-22T00:00:00Z |
hierarchy_top_id |
165669977 |
dewey-sort |
3510 |
id |
OLC2143756151 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143756151</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118091610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00526-023-02490-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143756151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00526-023-02490-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Esposito, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1733-8449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularity results for a free interface problem with Hölder coefficients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamberti, L.</subfield><subfield code="0">(orcid)0000-0002-2649-6011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Calculus of variations and partial differential equations</subfield><subfield code="d">Springer Berlin Heidelberg, 1993</subfield><subfield code="g">62(2023), 5 vom: 22. Mai</subfield><subfield code="w">(DE-627)165669977</subfield><subfield code="w">(DE-600)1144181-1</subfield><subfield code="w">(DE-576)033045690</subfield><subfield code="x">0944-2669</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00526-023-02490-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Esposito, L. |
spellingShingle |
Esposito, L. ddc 510 ssgn 17,1 Regularity results for a free interface problem with Hölder coefficients |
authorStr |
Esposito, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669977 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-2669 |
topic_title |
510 VZ 17,1 ssgn Regularity results for a free interface problem with Hölder coefficients |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Calculus of variations and partial differential equations |
hierarchy_parent_id |
165669977 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Calculus of variations and partial differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 |
title |
Regularity results for a free interface problem with Hölder coefficients |
ctrlnum |
(DE-627)OLC2143756151 (DE-He213)s00526-023-02490-x-p |
title_full |
Regularity results for a free interface problem with Hölder coefficients |
author_sort |
Esposito, L. |
journal |
Calculus of variations and partial differential equations |
journalStr |
Calculus of variations and partial differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Esposito, L. Lamberti, L. |
container_volume |
62 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Esposito, L. |
doi_str_mv |
10.1007/s00526-023-02490-x |
normlink |
(ORCID)0000-0003-1733-8449 (ORCID)0000-0002-2649-6011 |
normlink_prefix_str_mv |
(orcid)0000-0003-1733-8449 (orcid)0000-0002-2649-6011 |
dewey-full |
510 |
title_sort |
regularity results for a free interface problem with hölder coefficients |
title_auth |
Regularity results for a free interface problem with Hölder coefficients |
abstract |
Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. © The Author(s) 2023 |
abstractGer |
Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. © The Author(s) 2023 |
abstract_unstemmed |
Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
5 |
title_short |
Regularity results for a free interface problem with Hölder coefficients |
url |
https://doi.org/10.1007/s00526-023-02490-x |
remote_bool |
false |
author2 |
Lamberti, L. |
author2Str |
Lamberti, L. |
ppnlink |
165669977 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00526-023-02490-x |
up_date |
2024-07-03T17:52:50.057Z |
_version_ |
1803581307021688832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143756151</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118091610.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00526-023-02490-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143756151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00526-023-02490-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Esposito, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1733-8449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularity results for a free interface problem with Hölder coefficients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study a class of variational problems involving both bulk and interface energies. The bulk energy is of Dirichlet type albeit of very general form allowing the dependence from the unknown variable u and the position x. We employ the regularity theory of $$\Lambda $$-minimizers to study the regularity of the free interface. The hallmark of the paper is the mild regularity assumption concerning the dependence of the coefficients with respect to x and u that is of Hölder type.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamberti, L.</subfield><subfield code="0">(orcid)0000-0002-2649-6011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Calculus of variations and partial differential equations</subfield><subfield code="d">Springer Berlin Heidelberg, 1993</subfield><subfield code="g">62(2023), 5 vom: 22. Mai</subfield><subfield code="w">(DE-627)165669977</subfield><subfield code="w">(DE-600)1144181-1</subfield><subfield code="w">(DE-576)033045690</subfield><subfield code="x">0944-2669</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00526-023-02490-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4028025 |