Fault detection in seismic data using graph convolutional network

Abstract Generally, seismic data have discontinuity or planar fracture anomalies in the volume of rocks, commonly known as seismic faults. A large number of methods exist to interpret seismic faults, nevertheless automating the process prevails to be a practical challenge. We propose a graph represe...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Palo, Patitapaban [verfasserIn]

Routray, Aurobinda

Mahadik, Rahul

Singh, Sanjai

Format:

Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Graph convolutional network (GCN)

Graph neural network (GNN)

Seismic fault interpretation

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: The journal of supercomputing - Springer US, 1987, 79(2023), 11 vom: 18. März, Seite 12737-12765

Übergeordnetes Werk:

volume:79 ; year:2023 ; number:11 ; day:18 ; month:03 ; pages:12737-12765

Links:

Volltext

DOI / URN:

10.1007/s11227-023-05173-8

Katalog-ID:

OLC2143780516

Nicht das Richtige dabei?

Schreiben Sie uns!