A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity

Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is e...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wu, Zeyu [verfasserIn]

Wang, Cheng

Liu, Weidong

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Gaussian graphical model

High-dimensional data

Lasso

Precision matrix

Weak sparsity

Anmerkung:

© The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Annals of the Institute of Statistical Mathematics - Springer Japan, 1949, 75(2022), 4 vom: 08. Dez., Seite 619-648

Übergeordnetes Werk:

volume:75 ; year:2022 ; number:4 ; day:08 ; month:12 ; pages:619-648

Links:

Volltext

DOI / URN:

10.1007/s10463-022-00856-0

Katalog-ID:

OLC2143842627

Nicht das Richtige dabei?

Schreiben Sie uns!