A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity
Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is e...
Ausführliche Beschreibung
Autor*in: |
Wu, Zeyu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of the Institute of Statistical Mathematics - Springer Japan, 1949, 75(2022), 4 vom: 08. Dez., Seite 619-648 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2022 ; number:4 ; day:08 ; month:12 ; pages:619-648 |
Links: |
---|
DOI / URN: |
10.1007/s10463-022-00856-0 |
---|
Katalog-ID: |
OLC2143842627 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2143842627 | ||
003 | DE-627 | ||
005 | 20240118092028.0 | ||
007 | tu | ||
008 | 240118s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10463-022-00856-0 |2 doi | |
035 | |a (DE-627)OLC2143842627 | ||
035 | |a (DE-He213)s10463-022-00856-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Wu, Zeyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. | ||
650 | 4 | |a Gaussian graphical model | |
650 | 4 | |a High-dimensional data | |
650 | 4 | |a Lasso | |
650 | 4 | |a Precision matrix | |
650 | 4 | |a Weak sparsity | |
700 | 1 | |a Wang, Cheng |4 aut | |
700 | 1 | |a Liu, Weidong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of the Institute of Statistical Mathematics |d Springer Japan, 1949 |g 75(2022), 4 vom: 08. Dez., Seite 619-648 |w (DE-627)129934658 |w (DE-600)390313-8 |w (DE-576)015492907 |x 0020-3157 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2022 |g number:4 |g day:08 |g month:12 |g pages:619-648 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10463-022-00856-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 75 |j 2022 |e 4 |b 08 |c 12 |h 619-648 |
author_variant |
z w zw c w cw w l wl |
---|---|
matchkey_str |
article:00203157:2022----::uiidrcsomtietmtofaeokisasclmwsivre |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10463-022-00856-0 doi (DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p DE-627 ger DE-627 rakwb eng 510 VZ Wu, Zeyu verfasserin aut A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity Wang, Cheng aut Liu, Weidong aut Enthalten in Annals of the Institute of Statistical Mathematics Springer Japan, 1949 75(2022), 4 vom: 08. Dez., Seite 619-648 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:75 year:2022 number:4 day:08 month:12 pages:619-648 https://doi.org/10.1007/s10463-022-00856-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 AR 75 2022 4 08 12 619-648 |
spelling |
10.1007/s10463-022-00856-0 doi (DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p DE-627 ger DE-627 rakwb eng 510 VZ Wu, Zeyu verfasserin aut A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity Wang, Cheng aut Liu, Weidong aut Enthalten in Annals of the Institute of Statistical Mathematics Springer Japan, 1949 75(2022), 4 vom: 08. Dez., Seite 619-648 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:75 year:2022 number:4 day:08 month:12 pages:619-648 https://doi.org/10.1007/s10463-022-00856-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 AR 75 2022 4 08 12 619-648 |
allfields_unstemmed |
10.1007/s10463-022-00856-0 doi (DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p DE-627 ger DE-627 rakwb eng 510 VZ Wu, Zeyu verfasserin aut A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity Wang, Cheng aut Liu, Weidong aut Enthalten in Annals of the Institute of Statistical Mathematics Springer Japan, 1949 75(2022), 4 vom: 08. Dez., Seite 619-648 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:75 year:2022 number:4 day:08 month:12 pages:619-648 https://doi.org/10.1007/s10463-022-00856-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 AR 75 2022 4 08 12 619-648 |
allfieldsGer |
10.1007/s10463-022-00856-0 doi (DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p DE-627 ger DE-627 rakwb eng 510 VZ Wu, Zeyu verfasserin aut A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity Wang, Cheng aut Liu, Weidong aut Enthalten in Annals of the Institute of Statistical Mathematics Springer Japan, 1949 75(2022), 4 vom: 08. Dez., Seite 619-648 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:75 year:2022 number:4 day:08 month:12 pages:619-648 https://doi.org/10.1007/s10463-022-00856-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 AR 75 2022 4 08 12 619-648 |
allfieldsSound |
10.1007/s10463-022-00856-0 doi (DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p DE-627 ger DE-627 rakwb eng 510 VZ Wu, Zeyu verfasserin aut A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity Wang, Cheng aut Liu, Weidong aut Enthalten in Annals of the Institute of Statistical Mathematics Springer Japan, 1949 75(2022), 4 vom: 08. Dez., Seite 619-648 (DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 0020-3157 nnns volume:75 year:2022 number:4 day:08 month:12 pages:619-648 https://doi.org/10.1007/s10463-022-00856-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 AR 75 2022 4 08 12 619-648 |
language |
English |
source |
Enthalten in Annals of the Institute of Statistical Mathematics 75(2022), 4 vom: 08. Dez., Seite 619-648 volume:75 year:2022 number:4 day:08 month:12 pages:619-648 |
sourceStr |
Enthalten in Annals of the Institute of Statistical Mathematics 75(2022), 4 vom: 08. Dez., Seite 619-648 volume:75 year:2022 number:4 day:08 month:12 pages:619-648 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of the Institute of Statistical Mathematics |
authorswithroles_txt_mv |
Wu, Zeyu @@aut@@ Wang, Cheng @@aut@@ Liu, Weidong @@aut@@ |
publishDateDaySort_date |
2022-12-08T00:00:00Z |
hierarchy_top_id |
129934658 |
dewey-sort |
3510 |
id |
OLC2143842627 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143842627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118092028.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10463-022-00856-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143842627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10463-022-00856-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Zeyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian graphical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-dimensional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lasso</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precision matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak sparsity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Weidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Springer Japan, 1949</subfield><subfield code="g">75(2022), 4 vom: 08. Dez., Seite 619-648</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:08</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:619-648</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10463-022-00856-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">08</subfield><subfield code="c">12</subfield><subfield code="h">619-648</subfield></datafield></record></collection>
|
author |
Wu, Zeyu |
spellingShingle |
Wu, Zeyu ddc 510 misc Gaussian graphical model misc High-dimensional data misc Lasso misc Precision matrix misc Weak sparsity A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
authorStr |
Wu, Zeyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934658 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-3157 |
topic_title |
510 VZ A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity Gaussian graphical model High-dimensional data Lasso Precision matrix Weak sparsity |
topic |
ddc 510 misc Gaussian graphical model misc High-dimensional data misc Lasso misc Precision matrix misc Weak sparsity |
topic_unstemmed |
ddc 510 misc Gaussian graphical model misc High-dimensional data misc Lasso misc Precision matrix misc Weak sparsity |
topic_browse |
ddc 510 misc Gaussian graphical model misc High-dimensional data misc Lasso misc Precision matrix misc Weak sparsity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of the Institute of Statistical Mathematics |
hierarchy_parent_id |
129934658 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annals of the Institute of Statistical Mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934658 (DE-600)390313-8 (DE-576)015492907 |
title |
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
ctrlnum |
(DE-627)OLC2143842627 (DE-He213)s10463-022-00856-0-p |
title_full |
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
author_sort |
Wu, Zeyu |
journal |
Annals of the Institute of Statistical Mathematics |
journalStr |
Annals of the Institute of Statistical Mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
619 |
author_browse |
Wu, Zeyu Wang, Cheng Liu, Weidong |
container_volume |
75 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Zeyu |
doi_str_mv |
10.1007/s10463-022-00856-0 |
dewey-full |
510 |
title_sort |
a unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
title_auth |
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
abstract |
Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently. © The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2018 |
container_issue |
4 |
title_short |
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity |
url |
https://doi.org/10.1007/s10463-022-00856-0 |
remote_bool |
false |
author2 |
Wang, Cheng Liu, Weidong |
author2Str |
Wang, Cheng Liu, Weidong |
ppnlink |
129934658 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10463-022-00856-0 |
up_date |
2024-07-03T18:27:28.504Z |
_version_ |
1803583486432378880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143842627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118092028.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10463-022-00856-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143842627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10463-022-00856-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Zeyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Institute of Statistical Mathematics, Tokyo 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian graphical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-dimensional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lasso</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precision matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak sparsity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Weidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of the Institute of Statistical Mathematics</subfield><subfield code="d">Springer Japan, 1949</subfield><subfield code="g">75(2022), 4 vom: 08. Dez., Seite 619-648</subfield><subfield code="w">(DE-627)129934658</subfield><subfield code="w">(DE-600)390313-8</subfield><subfield code="w">(DE-576)015492907</subfield><subfield code="x">0020-3157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:08</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:619-648</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10463-022-00856-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">08</subfield><subfield code="c">12</subfield><subfield code="h">619-648</subfield></datafield></record></collection>
|
score |
7.3993254 |