Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution
Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first par...
Ausführliche Beschreibung
Autor*in: |
Baudouin, Céline [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Contributions to mineralogy and petrology - Springer Berlin Heidelberg, 1966, 178(2023), 7 vom: 19. Juni |
---|---|
Übergeordnetes Werk: |
volume:178 ; year:2023 ; number:7 ; day:19 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s00410-023-02021-z |
---|
Katalog-ID: |
OLC2143955502 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2143955502 | ||
003 | DE-627 | ||
005 | 20240118095301.0 | ||
007 | tu | ||
008 | 240118s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00410-023-02021-z |2 doi | |
035 | |a (DE-627)OLC2143955502 | ||
035 | |a (DE-He213)s00410-023-02021-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
084 | |a TE 1000 |q VZ |2 rvk | ||
100 | 1 | |a Baudouin, Céline |e verfasserin |0 (orcid)0000-0003-4258-4297 |4 aut | |
245 | 1 | 0 | |a Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. | ||
650 | 4 | |a Natrocarbonatite | |
650 | 4 | |a Partition coefficient | |
650 | 4 | |a Oldoinyo Lengai | |
650 | 4 | |a Carbonate minerals | |
650 | 4 | |a Rare-earth elements | |
650 | 4 | |a REE | |
700 | 1 | |a France, Lydéric |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Contributions to mineralogy and petrology |d Springer Berlin Heidelberg, 1966 |g 178(2023), 7 vom: 19. Juni |w (DE-627)129068721 |w (DE-600)1616-0 |w (DE-576)014400367 |x 0010-7999 |7 nnns |
773 | 1 | 8 | |g volume:178 |g year:2023 |g number:7 |g day:19 |g month:06 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00410-023-02021-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | r | v | |a TE 1000 |
951 | |a AR | ||
952 | |d 178 |j 2023 |e 7 |b 19 |c 06 |
author_variant |
c b cb l f lf |
---|---|
matchkey_str |
article:00107999:2023----::rceeetattoigewegeoytneeetadarcroaieetmlcto |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00410-023-02021-z doi (DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Baudouin, Céline verfasserin (orcid)0000-0003-4258-4297 aut Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE France, Lydéric aut Enthalten in Contributions to mineralogy and petrology Springer Berlin Heidelberg, 1966 178(2023), 7 vom: 19. Juni (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:178 year:2023 number:7 day:19 month:06 https://doi.org/10.1007/s00410-023-02021-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 TE 1000 AR 178 2023 7 19 06 |
spelling |
10.1007/s00410-023-02021-z doi (DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Baudouin, Céline verfasserin (orcid)0000-0003-4258-4297 aut Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE France, Lydéric aut Enthalten in Contributions to mineralogy and petrology Springer Berlin Heidelberg, 1966 178(2023), 7 vom: 19. Juni (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:178 year:2023 number:7 day:19 month:06 https://doi.org/10.1007/s00410-023-02021-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 TE 1000 AR 178 2023 7 19 06 |
allfields_unstemmed |
10.1007/s00410-023-02021-z doi (DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Baudouin, Céline verfasserin (orcid)0000-0003-4258-4297 aut Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE France, Lydéric aut Enthalten in Contributions to mineralogy and petrology Springer Berlin Heidelberg, 1966 178(2023), 7 vom: 19. Juni (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:178 year:2023 number:7 day:19 month:06 https://doi.org/10.1007/s00410-023-02021-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 TE 1000 AR 178 2023 7 19 06 |
allfieldsGer |
10.1007/s00410-023-02021-z doi (DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Baudouin, Céline verfasserin (orcid)0000-0003-4258-4297 aut Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE France, Lydéric aut Enthalten in Contributions to mineralogy and petrology Springer Berlin Heidelberg, 1966 178(2023), 7 vom: 19. Juni (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:178 year:2023 number:7 day:19 month:06 https://doi.org/10.1007/s00410-023-02021-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 TE 1000 AR 178 2023 7 19 06 |
allfieldsSound |
10.1007/s00410-023-02021-z doi (DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p DE-627 ger DE-627 rakwb eng 550 VZ 13 ssgn TE 1000 VZ rvk Baudouin, Céline verfasserin (orcid)0000-0003-4258-4297 aut Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE France, Lydéric aut Enthalten in Contributions to mineralogy and petrology Springer Berlin Heidelberg, 1966 178(2023), 7 vom: 19. Juni (DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 0010-7999 nnns volume:178 year:2023 number:7 day:19 month:06 https://doi.org/10.1007/s00410-023-02021-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 TE 1000 AR 178 2023 7 19 06 |
language |
English |
source |
Enthalten in Contributions to mineralogy and petrology 178(2023), 7 vom: 19. Juni volume:178 year:2023 number:7 day:19 month:06 |
sourceStr |
Enthalten in Contributions to mineralogy and petrology 178(2023), 7 vom: 19. Juni volume:178 year:2023 number:7 day:19 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Contributions to mineralogy and petrology |
authorswithroles_txt_mv |
Baudouin, Céline @@aut@@ France, Lydéric @@aut@@ |
publishDateDaySort_date |
2023-06-19T00:00:00Z |
hierarchy_top_id |
129068721 |
dewey-sort |
3550 |
id |
OLC2143955502 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143955502</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118095301.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00410-023-02021-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143955502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00410-023-02021-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baudouin, Céline</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4258-4297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natrocarbonatite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldoinyo Lengai</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate minerals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare-earth elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REE</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">France, Lydéric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer Berlin Heidelberg, 1966</subfield><subfield code="g">178(2023), 7 vom: 19. Juni</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00410-023-02021-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Baudouin, Céline |
spellingShingle |
Baudouin, Céline ddc 550 ssgn 13 rvk TE 1000 misc Natrocarbonatite misc Partition coefficient misc Oldoinyo Lengai misc Carbonate minerals misc Rare-earth elements misc REE Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
authorStr |
Baudouin, Céline |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129068721 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-7999 |
topic_title |
550 VZ 13 ssgn TE 1000 VZ rvk Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution Natrocarbonatite Partition coefficient Oldoinyo Lengai Carbonate minerals Rare-earth elements REE |
topic |
ddc 550 ssgn 13 rvk TE 1000 misc Natrocarbonatite misc Partition coefficient misc Oldoinyo Lengai misc Carbonate minerals misc Rare-earth elements misc REE |
topic_unstemmed |
ddc 550 ssgn 13 rvk TE 1000 misc Natrocarbonatite misc Partition coefficient misc Oldoinyo Lengai misc Carbonate minerals misc Rare-earth elements misc REE |
topic_browse |
ddc 550 ssgn 13 rvk TE 1000 misc Natrocarbonatite misc Partition coefficient misc Oldoinyo Lengai misc Carbonate minerals misc Rare-earth elements misc REE |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Contributions to mineralogy and petrology |
hierarchy_parent_id |
129068721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Contributions to mineralogy and petrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129068721 (DE-600)1616-0 (DE-576)014400367 |
title |
Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
ctrlnum |
(DE-627)OLC2143955502 (DE-He213)s00410-023-02021-z-p |
title_full |
Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
author_sort |
Baudouin, Céline |
journal |
Contributions to mineralogy and petrology |
journalStr |
Contributions to mineralogy and petrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Baudouin, Céline France, Lydéric |
container_volume |
178 |
class |
550 VZ 13 ssgn TE 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Baudouin, Céline |
doi_str_mv |
10.1007/s00410-023-02021-z |
normlink |
(ORCID)0000-0003-4258-4297 |
normlink_prefix_str_mv |
(orcid)0000-0003-4258-4297 |
dewey-full |
550 |
title_sort |
trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
title_auth |
Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
abstract |
Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
7 |
title_short |
Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution |
url |
https://doi.org/10.1007/s00410-023-02021-z |
remote_bool |
false |
author2 |
France, Lydéric |
author2Str |
France, Lydéric |
ppnlink |
129068721 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00410-023-02021-z |
up_date |
2024-07-03T19:09:50.137Z |
_version_ |
1803586151529840640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2143955502</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118095301.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00410-023-02021-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2143955502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00410-023-02021-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TE 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baudouin, Céline</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4258-4297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+ = 1.1 Å to r04+ = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs ($${D}_{Nd}^{Nye}$$= 0.58 vs. $${D}_{Nd}^{Ggy}$$ = 0.21; $${D}_{La}^{Nye}$$ = 0.27 vs. $${D}_{La}^{Ggy}$$ = 0.12), Sr ($${D}_{Sr}^{Nye}$$= 0.92 vs. $${D}_{Sr}^{Ggy}$$ = 0.5), Ba ($${D}_{Ba}^{Nye}$$= 0.22 vs. $${D}_{Ba}^{Ggy}$$ = 0.1), and Rb ($${D}_{Rb}^{Nye}$$= 0.35 vs. $${D}_{Rb}^{Ggy}$$ = 0.26), but lower for HFSEs (e.g., $${D}_{Hf}^{Nye}$$ = 0.13 vs. $${D}_{Hf}^{Ggy}$$ = 0.28; $${D}_{Nb}^{Nye}$$ = 0.02 vs. $${D}_{Nb}^{Ggy}$$ = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natrocarbonatite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldoinyo Lengai</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate minerals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare-earth elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REE</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">France, Lydéric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Contributions to mineralogy and petrology</subfield><subfield code="d">Springer Berlin Heidelberg, 1966</subfield><subfield code="g">178(2023), 7 vom: 19. Juni</subfield><subfield code="w">(DE-627)129068721</subfield><subfield code="w">(DE-600)1616-0</subfield><subfield code="w">(DE-576)014400367</subfield><subfield code="x">0010-7999</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00410-023-02021-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">TE 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.399441 |