Degenerations of Pascal lines
Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the...
Ausführliche Beschreibung
Autor*in: |
Chipalkatti, Jaydeep [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Managing Editors 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Beiträge zur Algebra und Geometrie - Springer Berlin Heidelberg, 1971, 64(2022), 3 vom: 22. Juli, Seite 761-781 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2022 ; number:3 ; day:22 ; month:07 ; pages:761-781 |
Links: |
---|
DOI / URN: |
10.1007/s13366-022-00655-x |
---|
Katalog-ID: |
OLC2144476438 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2144476438 | ||
003 | DE-627 | ||
005 | 20240118095231.0 | ||
007 | tu | ||
008 | 240118s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s13366-022-00655-x |2 doi | |
035 | |a (DE-627)OLC2144476438 | ||
035 | |a (DE-He213)s13366-022-00655-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Chipalkatti, Jaydeep |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degenerations of Pascal lines |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Managing Editors 2022 | ||
520 | |a Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. | ||
650 | 4 | |a Pascal’s theorem | |
650 | 4 | |a Pascal lines | |
650 | 4 | |a Hexagrammum Mysticum | |
700 | 1 | |a Da Silva, Sergio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Beiträge zur Algebra und Geometrie |d Springer Berlin Heidelberg, 1971 |g 64(2022), 3 vom: 22. Juli, Seite 761-781 |w (DE-627)129565830 |w (DE-600)223551-1 |w (DE-576)015035735 |x 0138-4821 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2022 |g number:3 |g day:22 |g month:07 |g pages:761-781 |
856 | 4 | 1 | |u https://doi.org/10.1007/s13366-022-00655-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 64 |j 2022 |e 3 |b 22 |c 07 |h 761-781 |
author_variant |
j c jc s s d ss ssd |
---|---|
matchkey_str |
article:01384821:2022----::eeeainops |
hierarchy_sort_str |
2022 |
bklnumber |
31.00 |
publishDate |
2022 |
allfields |
10.1007/s13366-022-00655-x doi (DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Chipalkatti, Jaydeep verfasserin aut Degenerations of Pascal lines 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Managing Editors 2022 Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. Pascal’s theorem Pascal lines Hexagrammum Mysticum Da Silva, Sergio aut Enthalten in Beiträge zur Algebra und Geometrie Springer Berlin Heidelberg, 1971 64(2022), 3 vom: 22. Juli, Seite 761-781 (DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 0138-4821 nnns volume:64 year:2022 number:3 day:22 month:07 pages:761-781 https://doi.org/10.1007/s13366-022-00655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 64 2022 3 22 07 761-781 |
spelling |
10.1007/s13366-022-00655-x doi (DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Chipalkatti, Jaydeep verfasserin aut Degenerations of Pascal lines 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Managing Editors 2022 Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. Pascal’s theorem Pascal lines Hexagrammum Mysticum Da Silva, Sergio aut Enthalten in Beiträge zur Algebra und Geometrie Springer Berlin Heidelberg, 1971 64(2022), 3 vom: 22. Juli, Seite 761-781 (DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 0138-4821 nnns volume:64 year:2022 number:3 day:22 month:07 pages:761-781 https://doi.org/10.1007/s13366-022-00655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 64 2022 3 22 07 761-781 |
allfields_unstemmed |
10.1007/s13366-022-00655-x doi (DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Chipalkatti, Jaydeep verfasserin aut Degenerations of Pascal lines 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Managing Editors 2022 Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. Pascal’s theorem Pascal lines Hexagrammum Mysticum Da Silva, Sergio aut Enthalten in Beiträge zur Algebra und Geometrie Springer Berlin Heidelberg, 1971 64(2022), 3 vom: 22. Juli, Seite 761-781 (DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 0138-4821 nnns volume:64 year:2022 number:3 day:22 month:07 pages:761-781 https://doi.org/10.1007/s13366-022-00655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 64 2022 3 22 07 761-781 |
allfieldsGer |
10.1007/s13366-022-00655-x doi (DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Chipalkatti, Jaydeep verfasserin aut Degenerations of Pascal lines 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Managing Editors 2022 Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. Pascal’s theorem Pascal lines Hexagrammum Mysticum Da Silva, Sergio aut Enthalten in Beiträge zur Algebra und Geometrie Springer Berlin Heidelberg, 1971 64(2022), 3 vom: 22. Juli, Seite 761-781 (DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 0138-4821 nnns volume:64 year:2022 number:3 day:22 month:07 pages:761-781 https://doi.org/10.1007/s13366-022-00655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 64 2022 3 22 07 761-781 |
allfieldsSound |
10.1007/s13366-022-00655-x doi (DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Chipalkatti, Jaydeep verfasserin aut Degenerations of Pascal lines 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Managing Editors 2022 Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. Pascal’s theorem Pascal lines Hexagrammum Mysticum Da Silva, Sergio aut Enthalten in Beiträge zur Algebra und Geometrie Springer Berlin Heidelberg, 1971 64(2022), 3 vom: 22. Juli, Seite 761-781 (DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 0138-4821 nnns volume:64 year:2022 number:3 day:22 month:07 pages:761-781 https://doi.org/10.1007/s13366-022-00655-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 64 2022 3 22 07 761-781 |
language |
English |
source |
Enthalten in Beiträge zur Algebra und Geometrie 64(2022), 3 vom: 22. Juli, Seite 761-781 volume:64 year:2022 number:3 day:22 month:07 pages:761-781 |
sourceStr |
Enthalten in Beiträge zur Algebra und Geometrie 64(2022), 3 vom: 22. Juli, Seite 761-781 volume:64 year:2022 number:3 day:22 month:07 pages:761-781 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pascal’s theorem Pascal lines Hexagrammum Mysticum |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Beiträge zur Algebra und Geometrie |
authorswithroles_txt_mv |
Chipalkatti, Jaydeep @@aut@@ Da Silva, Sergio @@aut@@ |
publishDateDaySort_date |
2022-07-22T00:00:00Z |
hierarchy_top_id |
129565830 |
dewey-sort |
3510 |
id |
OLC2144476438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2144476438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118095231.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13366-022-00655-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2144476438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s13366-022-00655-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chipalkatti, Jaydeep</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degenerations of Pascal lines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Managing Editors 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hexagrammum Mysticum</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Da Silva, Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Beiträge zur Algebra und Geometrie</subfield><subfield code="d">Springer Berlin Heidelberg, 1971</subfield><subfield code="g">64(2022), 3 vom: 22. Juli, Seite 761-781</subfield><subfield code="w">(DE-627)129565830</subfield><subfield code="w">(DE-600)223551-1</subfield><subfield code="w">(DE-576)015035735</subfield><subfield code="x">0138-4821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:761-781</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s13366-022-00655-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield><subfield code="h">761-781</subfield></datafield></record></collection>
|
author |
Chipalkatti, Jaydeep |
spellingShingle |
Chipalkatti, Jaydeep ddc 510 ssgn 17,1 bkl 31.00 misc Pascal’s theorem misc Pascal lines misc Hexagrammum Mysticum Degenerations of Pascal lines |
authorStr |
Chipalkatti, Jaydeep |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129565830 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0138-4821 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Degenerations of Pascal lines Pascal’s theorem Pascal lines Hexagrammum Mysticum |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Pascal’s theorem misc Pascal lines misc Hexagrammum Mysticum |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Pascal’s theorem misc Pascal lines misc Hexagrammum Mysticum |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Pascal’s theorem misc Pascal lines misc Hexagrammum Mysticum |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Beiträge zur Algebra und Geometrie |
hierarchy_parent_id |
129565830 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Beiträge zur Algebra und Geometrie |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129565830 (DE-600)223551-1 (DE-576)015035735 |
title |
Degenerations of Pascal lines |
ctrlnum |
(DE-627)OLC2144476438 (DE-He213)s13366-022-00655-x-p |
title_full |
Degenerations of Pascal lines |
author_sort |
Chipalkatti, Jaydeep |
journal |
Beiträge zur Algebra und Geometrie |
journalStr |
Beiträge zur Algebra und Geometrie |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
761 |
author_browse |
Chipalkatti, Jaydeep Da Silva, Sergio |
container_volume |
64 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Chipalkatti, Jaydeep |
doi_str_mv |
10.1007/s13366-022-00655-x |
dewey-full |
510 |
title_sort |
degenerations of pascal lines |
title_auth |
Degenerations of Pascal lines |
abstract |
Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. © The Managing Editors 2022 |
abstractGer |
Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. © The Managing Editors 2022 |
abstract_unstemmed |
Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum. © The Managing Editors 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4310 GBV_ILN_4318 |
container_issue |
3 |
title_short |
Degenerations of Pascal lines |
url |
https://doi.org/10.1007/s13366-022-00655-x |
remote_bool |
false |
author2 |
Da Silva, Sergio |
author2Str |
Da Silva, Sergio |
ppnlink |
129565830 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13366-022-00655-x |
up_date |
2024-07-03T22:30:34.784Z |
_version_ |
1803598781256564736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2144476438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118095231.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13366-022-00655-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2144476438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s13366-022-00655-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chipalkatti, Jaydeep</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degenerations of Pascal lines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Managing Editors 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $${\mathcal {K}}$$ denote a nonsingular conic in the projective plane. Pascal’s theorem says that, given six distinct points A, B, C, D, E, F on $${\mathcal {K}}$$, the three intersection points $$AE \cap BF, AD \cap CF, BD \cap CE$$ are collinear. The line containing them is called the Pascal line of the sextuple. However, this construction may fail when some of the six points come together. In this paper, we find the indeterminacy locus where the Pascal line is not well-defined and then use blow-ups along polydiagonals to define it. We analyse the geometry of Pascals in these degenerate cases. Finally we offer some remarks about the indeterminacy of other geometric elements in Pascal’s hexagrammum mysticum.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pascal lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hexagrammum Mysticum</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Da Silva, Sergio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Beiträge zur Algebra und Geometrie</subfield><subfield code="d">Springer Berlin Heidelberg, 1971</subfield><subfield code="g">64(2022), 3 vom: 22. Juli, Seite 761-781</subfield><subfield code="w">(DE-627)129565830</subfield><subfield code="w">(DE-600)223551-1</subfield><subfield code="w">(DE-576)015035735</subfield><subfield code="x">0138-4821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:761-781</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s13366-022-00655-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield><subfield code="h">761-781</subfield></datafield></record></collection>
|
score |
7.40077 |