Image encryption algorithm with 2D coupled discrete chaos
Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distrib...
Ausführliche Beschreibung
Autor*in: |
Li, Bo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 82(2023), 23 vom: 17. März, Seite 35379-35400 |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2023 ; number:23 ; day:17 ; month:03 ; pages:35379-35400 |
Links: |
---|
DOI / URN: |
10.1007/s11042-023-15002-y |
---|
Katalog-ID: |
OLC2145648550 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2145648550 | ||
003 | DE-627 | ||
005 | 20240118105850.0 | ||
007 | tu | ||
008 | 240118s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-023-15002-y |2 doi | |
035 | |a (DE-627)OLC2145648550 | ||
035 | |a (DE-He213)s11042-023-15002-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Li, Bo |e verfasserin |0 (orcid)0000-0002-6921-9196 |4 aut | |
245 | 1 | 0 | |a Image encryption algorithm with 2D coupled discrete chaos |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. | ||
650 | 4 | |a Chaotic system | |
650 | 4 | |a Two-dimensional coupled | |
650 | 4 | |a Tent map | |
650 | 4 | |a Image encryption | |
700 | 1 | |a Liu, Jiandong |4 aut | |
700 | 1 | |a Liu, Yujie |4 aut | |
700 | 1 | |a Xu, Haoqiang |4 aut | |
700 | 1 | |a Wang, Jin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 82(2023), 23 vom: 17. März, Seite 35379-35400 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:2023 |g number:23 |g day:17 |g month:03 |g pages:35379-35400 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-023-15002-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
951 | |a AR | ||
952 | |d 82 |j 2023 |e 23 |b 17 |c 03 |h 35379-35400 |
author_variant |
b l bl j l jl y l yl h x hx j w jw |
---|---|
matchkey_str |
article:13807501:2023----::mgecytoagrtmihdope |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11042-023-15002-y doi (DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Li, Bo verfasserin (orcid)0000-0002-6921-9196 aut Image encryption algorithm with 2D coupled discrete chaos 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. Chaotic system Two-dimensional coupled Tent map Image encryption Liu, Jiandong aut Liu, Yujie aut Xu, Haoqiang aut Wang, Jin aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2023), 23 vom: 17. März, Seite 35379-35400 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 https://doi.org/10.1007/s11042-023-15002-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2023 23 17 03 35379-35400 |
spelling |
10.1007/s11042-023-15002-y doi (DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Li, Bo verfasserin (orcid)0000-0002-6921-9196 aut Image encryption algorithm with 2D coupled discrete chaos 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. Chaotic system Two-dimensional coupled Tent map Image encryption Liu, Jiandong aut Liu, Yujie aut Xu, Haoqiang aut Wang, Jin aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2023), 23 vom: 17. März, Seite 35379-35400 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 https://doi.org/10.1007/s11042-023-15002-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2023 23 17 03 35379-35400 |
allfields_unstemmed |
10.1007/s11042-023-15002-y doi (DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Li, Bo verfasserin (orcid)0000-0002-6921-9196 aut Image encryption algorithm with 2D coupled discrete chaos 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. Chaotic system Two-dimensional coupled Tent map Image encryption Liu, Jiandong aut Liu, Yujie aut Xu, Haoqiang aut Wang, Jin aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2023), 23 vom: 17. März, Seite 35379-35400 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 https://doi.org/10.1007/s11042-023-15002-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2023 23 17 03 35379-35400 |
allfieldsGer |
10.1007/s11042-023-15002-y doi (DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Li, Bo verfasserin (orcid)0000-0002-6921-9196 aut Image encryption algorithm with 2D coupled discrete chaos 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. Chaotic system Two-dimensional coupled Tent map Image encryption Liu, Jiandong aut Liu, Yujie aut Xu, Haoqiang aut Wang, Jin aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2023), 23 vom: 17. März, Seite 35379-35400 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 https://doi.org/10.1007/s11042-023-15002-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2023 23 17 03 35379-35400 |
allfieldsSound |
10.1007/s11042-023-15002-y doi (DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p DE-627 ger DE-627 rakwb eng 070 004 VZ Li, Bo verfasserin (orcid)0000-0002-6921-9196 aut Image encryption algorithm with 2D coupled discrete chaos 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. Chaotic system Two-dimensional coupled Tent map Image encryption Liu, Jiandong aut Liu, Yujie aut Xu, Haoqiang aut Wang, Jin aut Enthalten in Multimedia tools and applications Springer US, 1995 82(2023), 23 vom: 17. März, Seite 35379-35400 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 https://doi.org/10.1007/s11042-023-15002-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 82 2023 23 17 03 35379-35400 |
language |
English |
source |
Enthalten in Multimedia tools and applications 82(2023), 23 vom: 17. März, Seite 35379-35400 volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 |
sourceStr |
Enthalten in Multimedia tools and applications 82(2023), 23 vom: 17. März, Seite 35379-35400 volume:82 year:2023 number:23 day:17 month:03 pages:35379-35400 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chaotic system Two-dimensional coupled Tent map Image encryption |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Li, Bo @@aut@@ Liu, Jiandong @@aut@@ Liu, Yujie @@aut@@ Xu, Haoqiang @@aut@@ Wang, Jin @@aut@@ |
publishDateDaySort_date |
2023-03-17T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2145648550 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2145648550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118105850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-023-15002-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2145648550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-023-15002-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6921-9196</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image encryption algorithm with 2D coupled discrete chaos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-dimensional coupled</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tent map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image encryption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jiandong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Haoqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">82(2023), 23 vom: 17. März, Seite 35379-35400</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:23</subfield><subfield code="g">day:17</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:35379-35400</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-023-15002-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2023</subfield><subfield code="e">23</subfield><subfield code="b">17</subfield><subfield code="c">03</subfield><subfield code="h">35379-35400</subfield></datafield></record></collection>
|
author |
Li, Bo |
spellingShingle |
Li, Bo ddc 070 misc Chaotic system misc Two-dimensional coupled misc Tent map misc Image encryption Image encryption algorithm with 2D coupled discrete chaos |
authorStr |
Li, Bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Image encryption algorithm with 2D coupled discrete chaos Chaotic system Two-dimensional coupled Tent map Image encryption |
topic |
ddc 070 misc Chaotic system misc Two-dimensional coupled misc Tent map misc Image encryption |
topic_unstemmed |
ddc 070 misc Chaotic system misc Two-dimensional coupled misc Tent map misc Image encryption |
topic_browse |
ddc 070 misc Chaotic system misc Two-dimensional coupled misc Tent map misc Image encryption |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Image encryption algorithm with 2D coupled discrete chaos |
ctrlnum |
(DE-627)OLC2145648550 (DE-He213)s11042-023-15002-y-p |
title_full |
Image encryption algorithm with 2D coupled discrete chaos |
author_sort |
Li, Bo |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
35379 |
author_browse |
Li, Bo Liu, Jiandong Liu, Yujie Xu, Haoqiang Wang, Jin |
container_volume |
82 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Li, Bo |
doi_str_mv |
10.1007/s11042-023-15002-y |
normlink |
(ORCID)0000-0002-6921-9196 |
normlink_prefix_str_mv |
(orcid)0000-0002-6921-9196 |
dewey-full |
070 004 |
title_sort |
image encryption algorithm with 2d coupled discrete chaos |
title_auth |
Image encryption algorithm with 2D coupled discrete chaos |
abstract |
Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW |
container_issue |
23 |
title_short |
Image encryption algorithm with 2D coupled discrete chaos |
url |
https://doi.org/10.1007/s11042-023-15002-y |
remote_bool |
false |
author2 |
Liu, Jiandong Liu, Yujie Xu, Haoqiang Wang, Jin |
author2Str |
Liu, Jiandong Liu, Yujie Xu, Haoqiang Wang, Jin |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-023-15002-y |
up_date |
2024-07-04T03:54:38.894Z |
_version_ |
1803619169898332160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2145648550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240118105850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">240118s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-023-15002-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2145648550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-023-15002-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6921-9196</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image encryption algorithm with 2D coupled discrete chaos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A two-dimensional coupled discrete chaotic system is constructed by combining a two-dimensional coupled map lattice with a dynamic discrete tent map. The system has good initial value sensitivity and can quickly generate multi-dimensional integer pseudo-random sequences with uniform distribution properties. Based on this system, a color image encryption algorithm is designed, using the integer pseudo-random sequence generated by the two-dimensional coupled discrete chaos to construct the diffusion function, complete the diffusion operation of pixels, and achieve the position permutation of pixels by using the uniform distribution property of the chaotic sequence to realize the image encryption operation. The simulation results prove that the algorithm has a large key space, high key sensitivity and high security, and can effectively resist common cryptanalysis,and meet the demand for the secure transmission of image data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two-dimensional coupled</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tent map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image encryption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jiandong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Haoqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">82(2023), 23 vom: 17. März, Seite 35379-35400</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:23</subfield><subfield code="g">day:17</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:35379-35400</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-023-15002-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2023</subfield><subfield code="e">23</subfield><subfield code="b">17</subfield><subfield code="c">03</subfield><subfield code="h">35379-35400</subfield></datafield></record></collection>
|
score |
7.3984203 |