The No Ghost Theorem in String Theory
Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no gh...
Ausführliche Beschreibung
Autor*in: |
Parrott, Stephen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag, Basel 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Results in mathematics - Berlin : Springer, 1978, 21(1992), 3-4 vom: Mai, Seite 379-395 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:1992 ; number:3-4 ; month:05 ; pages:379-395 |
Links: |
---|
DOI / URN: |
10.1007/BF03323095 |
---|
Katalog-ID: |
SPR000257125 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR000257125 | ||
003 | DE-627 | ||
005 | 20230327142325.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s1992 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03323095 |2 doi | |
035 | |a (DE-627)SPR000257125 | ||
035 | |a (SPR)BF03323095-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Parrott, Stephen |e verfasserin |4 aut | |
245 | 1 | 4 | |a The No Ghost Theorem in String Theory |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag, Basel 1992 | ||
520 | |a Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. | ||
650 | 4 | |a Critical Dimension |7 (dpeaa)DE-He213 | |
650 | 4 | |a Creation Operator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Number Operator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spurious State |7 (dpeaa)DE-He213 | |
650 | 4 | |a Negative Norm State |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Results in mathematics |d Berlin : Springer, 1978 |g 21(1992), 3-4 vom: Mai, Seite 379-395 |w (DE-627)327046066 |w (DE-600)2043519-8 |x 1420-9012 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:1992 |g number:3-4 |g month:05 |g pages:379-395 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/BF03323095 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2190 | ||
951 | |a AR | ||
952 | |d 21 |j 1992 |e 3-4 |c 05 |h 379-395 |
author_variant |
s p sp |
---|---|
matchkey_str |
article:14209012:1992----::hngothoeis |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1007/BF03323095 doi (DE-627)SPR000257125 (SPR)BF03323095-e DE-627 ger DE-627 rakwb eng Parrott, Stephen verfasserin aut The No Ghost Theorem in String Theory 1992 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Birkhäuser Verlag, Basel 1992 Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 Enthalten in Results in mathematics Berlin : Springer, 1978 21(1992), 3-4 vom: Mai, Seite 379-395 (DE-627)327046066 (DE-600)2043519-8 1420-9012 nnns volume:21 year:1992 number:3-4 month:05 pages:379-395 https://dx.doi.org/10.1007/BF03323095 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 AR 21 1992 3-4 05 379-395 |
spelling |
10.1007/BF03323095 doi (DE-627)SPR000257125 (SPR)BF03323095-e DE-627 ger DE-627 rakwb eng Parrott, Stephen verfasserin aut The No Ghost Theorem in String Theory 1992 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Birkhäuser Verlag, Basel 1992 Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 Enthalten in Results in mathematics Berlin : Springer, 1978 21(1992), 3-4 vom: Mai, Seite 379-395 (DE-627)327046066 (DE-600)2043519-8 1420-9012 nnns volume:21 year:1992 number:3-4 month:05 pages:379-395 https://dx.doi.org/10.1007/BF03323095 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 AR 21 1992 3-4 05 379-395 |
allfields_unstemmed |
10.1007/BF03323095 doi (DE-627)SPR000257125 (SPR)BF03323095-e DE-627 ger DE-627 rakwb eng Parrott, Stephen verfasserin aut The No Ghost Theorem in String Theory 1992 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Birkhäuser Verlag, Basel 1992 Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 Enthalten in Results in mathematics Berlin : Springer, 1978 21(1992), 3-4 vom: Mai, Seite 379-395 (DE-627)327046066 (DE-600)2043519-8 1420-9012 nnns volume:21 year:1992 number:3-4 month:05 pages:379-395 https://dx.doi.org/10.1007/BF03323095 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 AR 21 1992 3-4 05 379-395 |
allfieldsGer |
10.1007/BF03323095 doi (DE-627)SPR000257125 (SPR)BF03323095-e DE-627 ger DE-627 rakwb eng Parrott, Stephen verfasserin aut The No Ghost Theorem in String Theory 1992 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Birkhäuser Verlag, Basel 1992 Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 Enthalten in Results in mathematics Berlin : Springer, 1978 21(1992), 3-4 vom: Mai, Seite 379-395 (DE-627)327046066 (DE-600)2043519-8 1420-9012 nnns volume:21 year:1992 number:3-4 month:05 pages:379-395 https://dx.doi.org/10.1007/BF03323095 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 AR 21 1992 3-4 05 379-395 |
allfieldsSound |
10.1007/BF03323095 doi (DE-627)SPR000257125 (SPR)BF03323095-e DE-627 ger DE-627 rakwb eng Parrott, Stephen verfasserin aut The No Ghost Theorem in String Theory 1992 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Birkhäuser Verlag, Basel 1992 Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 Enthalten in Results in mathematics Berlin : Springer, 1978 21(1992), 3-4 vom: Mai, Seite 379-395 (DE-627)327046066 (DE-600)2043519-8 1420-9012 nnns volume:21 year:1992 number:3-4 month:05 pages:379-395 https://dx.doi.org/10.1007/BF03323095 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 AR 21 1992 3-4 05 379-395 |
language |
English |
source |
Enthalten in Results in mathematics 21(1992), 3-4 vom: Mai, Seite 379-395 volume:21 year:1992 number:3-4 month:05 pages:379-395 |
sourceStr |
Enthalten in Results in mathematics 21(1992), 3-4 vom: Mai, Seite 379-395 volume:21 year:1992 number:3-4 month:05 pages:379-395 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Critical Dimension Creation Operator Number Operator Spurious State Negative Norm State |
isfreeaccess_bool |
false |
container_title |
Results in mathematics |
authorswithroles_txt_mv |
Parrott, Stephen @@aut@@ |
publishDateDaySort_date |
1992-05-01T00:00:00Z |
hierarchy_top_id |
327046066 |
id |
SPR000257125 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR000257125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230327142325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s1992 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03323095</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR000257125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03323095-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parrott, Stephen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The No Ghost Theorem in String Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Dimension</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creation Operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spurious State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative Norm State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Results in mathematics</subfield><subfield code="d">Berlin : Springer, 1978</subfield><subfield code="g">21(1992), 3-4 vom: Mai, Seite 379-395</subfield><subfield code="w">(DE-627)327046066</subfield><subfield code="w">(DE-600)2043519-8</subfield><subfield code="x">1420-9012</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:379-395</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03323095</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1992</subfield><subfield code="e">3-4</subfield><subfield code="c">05</subfield><subfield code="h">379-395</subfield></datafield></record></collection>
|
author |
Parrott, Stephen |
spellingShingle |
Parrott, Stephen misc Critical Dimension misc Creation Operator misc Number Operator misc Spurious State misc Negative Norm State The No Ghost Theorem in String Theory |
authorStr |
Parrott, Stephen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)327046066 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1420-9012 |
topic_title |
The No Ghost Theorem in String Theory Critical Dimension (dpeaa)DE-He213 Creation Operator (dpeaa)DE-He213 Number Operator (dpeaa)DE-He213 Spurious State (dpeaa)DE-He213 Negative Norm State (dpeaa)DE-He213 |
topic |
misc Critical Dimension misc Creation Operator misc Number Operator misc Spurious State misc Negative Norm State |
topic_unstemmed |
misc Critical Dimension misc Creation Operator misc Number Operator misc Spurious State misc Negative Norm State |
topic_browse |
misc Critical Dimension misc Creation Operator misc Number Operator misc Spurious State misc Negative Norm State |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Results in mathematics |
hierarchy_parent_id |
327046066 |
hierarchy_top_title |
Results in mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)327046066 (DE-600)2043519-8 |
title |
The No Ghost Theorem in String Theory |
ctrlnum |
(DE-627)SPR000257125 (SPR)BF03323095-e |
title_full |
The No Ghost Theorem in String Theory |
author_sort |
Parrott, Stephen |
journal |
Results in mathematics |
journalStr |
Results in mathematics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
379 |
author_browse |
Parrott, Stephen |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Parrott, Stephen |
doi_str_mv |
10.1007/BF03323095 |
title_sort |
no ghost theorem in string theory |
title_auth |
The No Ghost Theorem in String Theory |
abstract |
Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. © Birkhäuser Verlag, Basel 1992 |
abstractGer |
Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. © Birkhäuser Verlag, Basel 1992 |
abstract_unstemmed |
Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26. © Birkhäuser Verlag, Basel 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_63 GBV_ILN_150 GBV_ILN_702 GBV_ILN_2190 |
container_issue |
3-4 |
title_short |
The No Ghost Theorem in String Theory |
url |
https://dx.doi.org/10.1007/BF03323095 |
remote_bool |
true |
ppnlink |
327046066 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03323095 |
up_date |
2024-07-03T14:57:43.129Z |
_version_ |
1803570289709154304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR000257125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230327142325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s1992 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03323095</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR000257125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03323095-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parrott, Stephen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The No Ghost Theorem in String Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A logically tight proof of the No Ghost Theorem for the standard bosonic open string theory is given, and an extension is established. The latter states that 26 is the critical dimension for all levels N = n > 2 of the number operator N in the sense that for any n > 2, there are no ghosts (negative norm states) on level N = n if and only if the dimension of spacetime is no greater than 26.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Dimension</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creation Operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Operator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spurious State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative Norm State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Results in mathematics</subfield><subfield code="d">Berlin : Springer, 1978</subfield><subfield code="g">21(1992), 3-4 vom: Mai, Seite 379-395</subfield><subfield code="w">(DE-627)327046066</subfield><subfield code="w">(DE-600)2043519-8</subfield><subfield code="x">1420-9012</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:379-395</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03323095</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1992</subfield><subfield code="e">3-4</subfield><subfield code="c">05</subfield><subfield code="h">379-395</subfield></datafield></record></collection>
|
score |
7.3993473 |