A Novel Adaptive Kernel for the RBF Neural Networks

Abstract In this paper, we propose a novel adaptive kernel for the radial basis function neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed framework dynamically adapts the weights of the p...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Khan, Shujaat [verfasserIn]

Naseem, Imran

Togneri, Roberto

Bennamoun, Mohammed

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2016

Schlagwörter:

Artificial neural networks

Radial basis function

Gaussian kernel

Support vector machine

Euclidean distance

Cosine distance

Kernel fusion

Anmerkung:

© Springer Science+Business Media New York 2016

Übergeordnetes Werk:

Enthalten in: Circuits, systems and signal processing - Boston, Mass. : Birkhäuser, 1982, 36(2016), 4 vom: 30. Juli, Seite 1639-1653

Übergeordnetes Werk:

volume:36 ; year:2016 ; number:4 ; day:30 ; month:07 ; pages:1639-1653

Links:

Volltext

DOI / URN:

10.1007/s00034-016-0375-7

Katalog-ID:

SPR000559482

Nicht das Richtige dabei?

Schreiben Sie uns!