No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC
Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the poss...
Ausführliche Beschreibung
Autor*in: |
Sanchez, Adriana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Swiss Botanical Society 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Botanica Helvetica - Berlin : Springer, 1981, 125(2015), 1 vom: 13. März, Seite 41-50 |
---|---|
Übergeordnetes Werk: |
volume:125 ; year:2015 ; number:1 ; day:13 ; month:03 ; pages:41-50 |
Links: |
---|
DOI / URN: |
10.1007/s00035-015-0146-2 |
---|
Katalog-ID: |
SPR000623652 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR000623652 | ||
003 | DE-627 | ||
005 | 20230330083857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00035-015-0146-2 |2 doi | |
035 | |a (DE-627)SPR000623652 | ||
035 | |a (SPR)s00035-015-0146-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sanchez, Adriana |e verfasserin |4 aut | |
245 | 1 | 0 | |a No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Swiss Botanical Society 2015 | ||
520 | |a Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. | ||
650 | 4 | |a Alpine plant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chlorophyll fluorescence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gas exchange |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photoinhibition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Xylem water potential |7 (dpeaa)DE-He213 | |
700 | 1 | |a Smith, William K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Botanica Helvetica |d Berlin : Springer, 1981 |g 125(2015), 1 vom: 13. März, Seite 41-50 |w (DE-627)494324775 |w (DE-600)2196426-9 |x 1420-9063 |7 nnns |
773 | 1 | 8 | |g volume:125 |g year:2015 |g number:1 |g day:13 |g month:03 |g pages:41-50 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00035-015-0146-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 125 |j 2015 |e 1 |b 13 |c 03 |h 41-50 |
author_variant |
a s as w k s wk wks |
---|---|
matchkey_str |
article:14209063:2015----::ovdneopooniiinfhtsnhssnli |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00035-015-0146-2 doi (DE-627)SPR000623652 (SPR)s00035-015-0146-2-e DE-627 ger DE-627 rakwb eng Sanchez, Adriana verfasserin aut No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Swiss Botanical Society 2015 Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 Smith, William K. aut Enthalten in Botanica Helvetica Berlin : Springer, 1981 125(2015), 1 vom: 13. März, Seite 41-50 (DE-627)494324775 (DE-600)2196426-9 1420-9063 nnns volume:125 year:2015 number:1 day:13 month:03 pages:41-50 https://dx.doi.org/10.1007/s00035-015-0146-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 AR 125 2015 1 13 03 41-50 |
spelling |
10.1007/s00035-015-0146-2 doi (DE-627)SPR000623652 (SPR)s00035-015-0146-2-e DE-627 ger DE-627 rakwb eng Sanchez, Adriana verfasserin aut No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Swiss Botanical Society 2015 Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 Smith, William K. aut Enthalten in Botanica Helvetica Berlin : Springer, 1981 125(2015), 1 vom: 13. März, Seite 41-50 (DE-627)494324775 (DE-600)2196426-9 1420-9063 nnns volume:125 year:2015 number:1 day:13 month:03 pages:41-50 https://dx.doi.org/10.1007/s00035-015-0146-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 AR 125 2015 1 13 03 41-50 |
allfields_unstemmed |
10.1007/s00035-015-0146-2 doi (DE-627)SPR000623652 (SPR)s00035-015-0146-2-e DE-627 ger DE-627 rakwb eng Sanchez, Adriana verfasserin aut No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Swiss Botanical Society 2015 Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 Smith, William K. aut Enthalten in Botanica Helvetica Berlin : Springer, 1981 125(2015), 1 vom: 13. März, Seite 41-50 (DE-627)494324775 (DE-600)2196426-9 1420-9063 nnns volume:125 year:2015 number:1 day:13 month:03 pages:41-50 https://dx.doi.org/10.1007/s00035-015-0146-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 AR 125 2015 1 13 03 41-50 |
allfieldsGer |
10.1007/s00035-015-0146-2 doi (DE-627)SPR000623652 (SPR)s00035-015-0146-2-e DE-627 ger DE-627 rakwb eng Sanchez, Adriana verfasserin aut No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Swiss Botanical Society 2015 Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 Smith, William K. aut Enthalten in Botanica Helvetica Berlin : Springer, 1981 125(2015), 1 vom: 13. März, Seite 41-50 (DE-627)494324775 (DE-600)2196426-9 1420-9063 nnns volume:125 year:2015 number:1 day:13 month:03 pages:41-50 https://dx.doi.org/10.1007/s00035-015-0146-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 AR 125 2015 1 13 03 41-50 |
allfieldsSound |
10.1007/s00035-015-0146-2 doi (DE-627)SPR000623652 (SPR)s00035-015-0146-2-e DE-627 ger DE-627 rakwb eng Sanchez, Adriana verfasserin aut No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Swiss Botanical Society 2015 Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 Smith, William K. aut Enthalten in Botanica Helvetica Berlin : Springer, 1981 125(2015), 1 vom: 13. März, Seite 41-50 (DE-627)494324775 (DE-600)2196426-9 1420-9063 nnns volume:125 year:2015 number:1 day:13 month:03 pages:41-50 https://dx.doi.org/10.1007/s00035-015-0146-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 AR 125 2015 1 13 03 41-50 |
language |
English |
source |
Enthalten in Botanica Helvetica 125(2015), 1 vom: 13. März, Seite 41-50 volume:125 year:2015 number:1 day:13 month:03 pages:41-50 |
sourceStr |
Enthalten in Botanica Helvetica 125(2015), 1 vom: 13. März, Seite 41-50 volume:125 year:2015 number:1 day:13 month:03 pages:41-50 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alpine plant Chlorophyll fluorescence Gas exchange Photoinhibition Xylem water potential |
isfreeaccess_bool |
false |
container_title |
Botanica Helvetica |
authorswithroles_txt_mv |
Sanchez, Adriana @@aut@@ Smith, William K. @@aut@@ |
publishDateDaySort_date |
2015-03-13T00:00:00Z |
hierarchy_top_id |
494324775 |
id |
SPR000623652 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR000623652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330083857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00035-015-0146-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR000623652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00035-015-0146-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanchez, Adriana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Swiss Botanical Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpine plant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll fluorescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas exchange</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoinhibition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xylem water potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, William K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Botanica Helvetica</subfield><subfield code="d">Berlin : Springer, 1981</subfield><subfield code="g">125(2015), 1 vom: 13. März, Seite 41-50</subfield><subfield code="w">(DE-627)494324775</subfield><subfield code="w">(DE-600)2196426-9</subfield><subfield code="x">1420-9063</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:41-50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00035-015-0146-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield><subfield code="h">41-50</subfield></datafield></record></collection>
|
author |
Sanchez, Adriana |
spellingShingle |
Sanchez, Adriana misc Alpine plant misc Chlorophyll fluorescence misc Gas exchange misc Photoinhibition misc Xylem water potential No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
authorStr |
Sanchez, Adriana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)494324775 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1420-9063 |
topic_title |
No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC Alpine plant (dpeaa)DE-He213 Chlorophyll fluorescence (dpeaa)DE-He213 Gas exchange (dpeaa)DE-He213 Photoinhibition (dpeaa)DE-He213 Xylem water potential (dpeaa)DE-He213 |
topic |
misc Alpine plant misc Chlorophyll fluorescence misc Gas exchange misc Photoinhibition misc Xylem water potential |
topic_unstemmed |
misc Alpine plant misc Chlorophyll fluorescence misc Gas exchange misc Photoinhibition misc Xylem water potential |
topic_browse |
misc Alpine plant misc Chlorophyll fluorescence misc Gas exchange misc Photoinhibition misc Xylem water potential |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Botanica Helvetica |
hierarchy_parent_id |
494324775 |
hierarchy_top_title |
Botanica Helvetica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)494324775 (DE-600)2196426-9 |
title |
No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
ctrlnum |
(DE-627)SPR000623652 (SPR)s00035-015-0146-2-e |
title_full |
No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
author_sort |
Sanchez, Adriana |
journal |
Botanica Helvetica |
journalStr |
Botanica Helvetica |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
41 |
author_browse |
Sanchez, Adriana Smith, William K. |
container_volume |
125 |
format_se |
Elektronische Aufsätze |
author-letter |
Sanchez, Adriana |
doi_str_mv |
10.1007/s00035-015-0146-2 |
title_sort |
no evidence for photoinhibition of photosynthesis in alpine caltha leptosepala dc |
title_auth |
No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
abstract |
Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. © Swiss Botanical Society 2015 |
abstractGer |
Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. © Swiss Botanical Society 2015 |
abstract_unstemmed |
Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species. © Swiss Botanical Society 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_702 |
container_issue |
1 |
title_short |
No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC |
url |
https://dx.doi.org/10.1007/s00035-015-0146-2 |
remote_bool |
true |
author2 |
Smith, William K. |
author2Str |
Smith, William K. |
ppnlink |
494324775 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00035-015-0146-2 |
up_date |
2024-07-03T17:19:53.079Z |
_version_ |
1803579234016296960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR000623652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330083857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00035-015-0146-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR000623652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00035-015-0146-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanchez, Adriana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">No evidence for photoinhibition of photosynthesis in alpine Caltha leptosepala DC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Swiss Botanical Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Alpine plants experience high levels of insolation, as well as cold nighttime temperatures throughout the summer growth period. These two stress factors in combination are now recognized as potentially important limitations to photosynthetic carbon gain. Although likely candidates, the possible occurrence of photoinhibition in alpine plants has been reported infrequently. We measured photoinhibitory stress under natural field conditions and after high-light treatments in an herbaceous species (Caltha leptosepala DC) with structural traits that appeared especially susceptible to photoinhibition, i.e., large, broad, laminar leaves with a near-horizontal leaf orientation. Although photosynthesis declined gradually during the afternoon under natural field conditions, no evidence was found for photoinhibition of photosynthesis, despite incident sunlight levels of >2500 µmol $ m^{−2} $ $ s^{−1} $. Also, values of %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (an indicator of dynamic photoinhibition) changed little (<10 %) from early morning to late afternoon values. Moreover, an experimental test of photoinhibition was conducted in the field using artificially applied low (250 µmol $ m^{−2} $ $ s^{−1} $) followed by unnaturally high (3500 µmol $ m^{−2} $ $ s^{−1} $) light levels, led to only small reductions in %${{F_{\text{v}}^{{\prime }} } \mathord{\left/ {\vphantom {{F_{\text{v}}^{{\prime }} } {F_{\text{m}}^{{\prime }} }}} \right. \kern-0pt} {F_{\text{m}}^{{\prime }} }}%$ (20 % maximum). Also, afternoon declines in photosynthesis and other gas exchange parameters were associated with significant decreases in xylem water potentials. Thus, accumulating daily water stress appeared to be a possible, greater physiological limitation than photoinhibition, even in this common, hypothetically susceptible alpine species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpine plant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll fluorescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas exchange</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoinhibition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Xylem water potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, William K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Botanica Helvetica</subfield><subfield code="d">Berlin : Springer, 1981</subfield><subfield code="g">125(2015), 1 vom: 13. März, Seite 41-50</subfield><subfield code="w">(DE-627)494324775</subfield><subfield code="w">(DE-600)2196426-9</subfield><subfield code="x">1420-9063</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:41-50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00035-015-0146-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield><subfield code="h">41-50</subfield></datafield></record></collection>
|
score |
7.401025 |