Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling
Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction b...
Ausführliche Beschreibung
Autor*in: |
Feng, Yanfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - London : Springer, 1985, 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 |
---|---|
Übergeordnetes Werk: |
volume:104 ; year:2019 ; number:5-8 ; day:31 ; month:07 ; pages:2925-2937 |
Links: |
---|
DOI / URN: |
10.1007/s00170-019-04027-z |
---|
Katalog-ID: |
SPR001496956 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR001496956 | ||
003 | DE-627 | ||
005 | 20230327133322.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-019-04027-z |2 doi | |
035 | |a (DE-627)SPR001496956 | ||
035 | |a (SPR)s00170-019-04027-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feng, Yanfeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2019 | ||
520 | |a Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. | ||
650 | 4 | |a Minimum thickness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Single-roll-driven asymmetric rolling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ultrathin strip |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deformation zone |7 (dpeaa)DE-He213 | |
650 | 4 | |a FE model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Wenwen |4 aut | |
700 | 1 | |a Yang, Tingsong |4 aut | |
700 | 1 | |a Du, Fengshan |4 aut | |
700 | 1 | |a Sun, Jingna |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d London : Springer, 1985 |g 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 |w (DE-627)270127712 |w (DE-600)1476510-X |x 1433-3015 |7 nnns |
773 | 1 | 8 | |g volume:104 |g year:2019 |g number:5-8 |g day:31 |g month:07 |g pages:2925-2937 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00170-019-04027-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 104 |j 2019 |e 5-8 |b 31 |c 07 |h 2925-2937 |
author_variant |
y f yf w l wl t y ty f d fd j s js |
---|---|
matchkey_str |
article:14333015:2019----::hoeiaadxeietlnlssfhdfrainoenmnmmhcnsisnlrldie |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00170-019-04027-z doi (DE-627)SPR001496956 (SPR)s00170-019-04027-z-e DE-627 ger DE-627 rakwb eng Feng, Yanfeng verfasserin aut Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 Liu, Wenwen aut Yang, Tingsong aut Du, Fengshan aut Sun, Jingna aut Enthalten in The international journal of advanced manufacturing technology London : Springer, 1985 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 (DE-627)270127712 (DE-600)1476510-X 1433-3015 nnns volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 https://dx.doi.org/10.1007/s00170-019-04027-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 104 2019 5-8 31 07 2925-2937 |
spelling |
10.1007/s00170-019-04027-z doi (DE-627)SPR001496956 (SPR)s00170-019-04027-z-e DE-627 ger DE-627 rakwb eng Feng, Yanfeng verfasserin aut Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 Liu, Wenwen aut Yang, Tingsong aut Du, Fengshan aut Sun, Jingna aut Enthalten in The international journal of advanced manufacturing technology London : Springer, 1985 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 (DE-627)270127712 (DE-600)1476510-X 1433-3015 nnns volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 https://dx.doi.org/10.1007/s00170-019-04027-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 104 2019 5-8 31 07 2925-2937 |
allfields_unstemmed |
10.1007/s00170-019-04027-z doi (DE-627)SPR001496956 (SPR)s00170-019-04027-z-e DE-627 ger DE-627 rakwb eng Feng, Yanfeng verfasserin aut Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 Liu, Wenwen aut Yang, Tingsong aut Du, Fengshan aut Sun, Jingna aut Enthalten in The international journal of advanced manufacturing technology London : Springer, 1985 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 (DE-627)270127712 (DE-600)1476510-X 1433-3015 nnns volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 https://dx.doi.org/10.1007/s00170-019-04027-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 104 2019 5-8 31 07 2925-2937 |
allfieldsGer |
10.1007/s00170-019-04027-z doi (DE-627)SPR001496956 (SPR)s00170-019-04027-z-e DE-627 ger DE-627 rakwb eng Feng, Yanfeng verfasserin aut Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 Liu, Wenwen aut Yang, Tingsong aut Du, Fengshan aut Sun, Jingna aut Enthalten in The international journal of advanced manufacturing technology London : Springer, 1985 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 (DE-627)270127712 (DE-600)1476510-X 1433-3015 nnns volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 https://dx.doi.org/10.1007/s00170-019-04027-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 104 2019 5-8 31 07 2925-2937 |
allfieldsSound |
10.1007/s00170-019-04027-z doi (DE-627)SPR001496956 (SPR)s00170-019-04027-z-e DE-627 ger DE-627 rakwb eng Feng, Yanfeng verfasserin aut Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 Liu, Wenwen aut Yang, Tingsong aut Du, Fengshan aut Sun, Jingna aut Enthalten in The international journal of advanced manufacturing technology London : Springer, 1985 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 (DE-627)270127712 (DE-600)1476510-X 1433-3015 nnns volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 https://dx.doi.org/10.1007/s00170-019-04027-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 104 2019 5-8 31 07 2925-2937 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 104(2019), 5-8 vom: 31. Juli, Seite 2925-2937 volume:104 year:2019 number:5-8 day:31 month:07 pages:2925-2937 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Minimum thickness Single-roll-driven asymmetric rolling Ultrathin strip Deformation zone FE model |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Feng, Yanfeng @@aut@@ Liu, Wenwen @@aut@@ Yang, Tingsong @@aut@@ Du, Fengshan @@aut@@ Sun, Jingna @@aut@@ |
publishDateDaySort_date |
2019-07-31T00:00:00Z |
hierarchy_top_id |
270127712 |
id |
SPR001496956 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR001496956</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230327133322.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04027-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR001496956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00170-019-04027-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Yanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum thickness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-roll-driven asymmetric rolling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrathin strip</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation zone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FE model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wenwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tingsong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Fengshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jingna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">London : Springer, 1985</subfield><subfield code="g">104(2019), 5-8 vom: 31. Juli, Seite 2925-2937</subfield><subfield code="w">(DE-627)270127712</subfield><subfield code="w">(DE-600)1476510-X</subfield><subfield code="x">1433-3015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2925-2937</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00170-019-04027-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2019</subfield><subfield code="e">5-8</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">2925-2937</subfield></datafield></record></collection>
|
author |
Feng, Yanfeng |
spellingShingle |
Feng, Yanfeng misc Minimum thickness misc Single-roll-driven asymmetric rolling misc Ultrathin strip misc Deformation zone misc FE model Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
authorStr |
Feng, Yanfeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270127712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1433-3015 |
topic_title |
Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling Minimum thickness (dpeaa)DE-He213 Single-roll-driven asymmetric rolling (dpeaa)DE-He213 Ultrathin strip (dpeaa)DE-He213 Deformation zone (dpeaa)DE-He213 FE model (dpeaa)DE-He213 |
topic |
misc Minimum thickness misc Single-roll-driven asymmetric rolling misc Ultrathin strip misc Deformation zone misc FE model |
topic_unstemmed |
misc Minimum thickness misc Single-roll-driven asymmetric rolling misc Ultrathin strip misc Deformation zone misc FE model |
topic_browse |
misc Minimum thickness misc Single-roll-driven asymmetric rolling misc Ultrathin strip misc Deformation zone misc FE model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
270127712 |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270127712 (DE-600)1476510-X |
title |
Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
ctrlnum |
(DE-627)SPR001496956 (SPR)s00170-019-04027-z-e |
title_full |
Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
author_sort |
Feng, Yanfeng |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2925 |
author_browse |
Feng, Yanfeng Liu, Wenwen Yang, Tingsong Du, Fengshan Sun, Jingna |
container_volume |
104 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Yanfeng |
doi_str_mv |
10.1007/s00170-019-04027-z |
title_sort |
theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
title_auth |
Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
abstract |
Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstractGer |
Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstract_unstemmed |
Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5-8 |
title_short |
Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling |
url |
https://dx.doi.org/10.1007/s00170-019-04027-z |
remote_bool |
true |
author2 |
Liu, Wenwen Yang, Tingsong Du, Fengshan Sun, Jingna |
author2Str |
Liu, Wenwen Yang, Tingsong Du, Fengshan Sun, Jingna |
ppnlink |
270127712 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-019-04027-z |
up_date |
2024-07-03T22:57:40.571Z |
_version_ |
1803600486025134080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR001496956</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230327133322.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04027-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR001496956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00170-019-04027-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Yanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical and experimental analysis of the deformation zone and minimum thickness in single-roll-driven asymmetric ultrathin strip rolling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Although asymmetric rolling is employed extensively to produce ultrathin strips in micromanufacturing, microelectronics, and other high precision engineering fields, very limited attention has been given to the deformation zone, which is a direct result of the material thickness reduction behavior during asymmetric rolling. In this study, theoretical analysis of the minimum thickness of single-roll-driven asymmetric rolling is performed by combining FE (finite element) and theoretical analytical models to complete a comprehensive investigation. Based on the FE model calculation results, the deformation zone contour varies with reduction ratio, strip thickness, and yield strength; the Fleck model can be used to describe single-roll-driven asymmetric ultrathin strip rolling when the thickness is small enough. Different from symmetric rolling, a cross-shear zone is inevitably formed during asymmetric rolling, but the cross-shear force resulting from asymmetric rolls decreases and approaches 0 with smaller strip thickness, smaller reduction ratio, and higher yield strength, which means the rolling status of single-roll-driven asymmetric ultrathin strip rolling is very similar to symmetric rolling when the strip reaches its limiting minimum thickness. Therefore, a minimum thickness model is developed for single-roll-driven asymmetric ultrathin strip rolling with different roll diameters, mean tensions and strip yield strengths, and the elastic modulus and Poisson ratio of the two rolls are considered. Eventually, the minimum thickness for single-roll-driven asymmetric rolling of ultrathin strips is estimated using the new minimum thickness model, with further experimental verification by the single-roll-driven asymmetric rolling of various materials, including aluminum, 304 stainless steel, and both non-annealed and annealed copper. Compared with experimental results, the model is shown to be a possible alternative for more accurate minimum thickness prediction in single-roll-driven asymmetric rolling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum thickness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-roll-driven asymmetric rolling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrathin strip</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation zone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FE model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wenwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tingsong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Fengshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jingna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">London : Springer, 1985</subfield><subfield code="g">104(2019), 5-8 vom: 31. Juli, Seite 2925-2937</subfield><subfield code="w">(DE-627)270127712</subfield><subfield code="w">(DE-600)1476510-X</subfield><subfield code="x">1433-3015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2925-2937</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00170-019-04027-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2019</subfield><subfield code="e">5-8</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">2925-2937</subfield></datafield></record></collection>
|
score |
7.4016743 |