Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea
Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the...
Ausführliche Beschreibung
Autor*in: |
Rodgers, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Urological research - Berlin : Springer, 1973, 44(2015), 4 vom: 31. Dez., Seite 299-310 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2015 ; number:4 ; day:31 ; month:12 ; pages:299-310 |
Links: |
---|
DOI / URN: |
10.1007/s00240-015-0855-4 |
---|
Katalog-ID: |
SPR002724294 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR002724294 | ||
003 | DE-627 | ||
005 | 20230519163842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00240-015-0855-4 |2 doi | |
035 | |a (DE-627)SPR002724294 | ||
035 | |a (SPR)s00240-015-0855-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rodgers, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. | ||
650 | 4 | |a Antioxidants |7 (dpeaa)DE-He213 | |
650 | 4 | |a Calcium oxalate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Crystallization risk factors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rooibos tea |7 (dpeaa)DE-He213 | |
650 | 4 | |a Green tea |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nephrolithiasis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Peroxidative risk factors |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mokoena, M. |4 aut | |
700 | 1 | |a Durbach, I. |4 aut | |
700 | 1 | |a Lazarus, J. |4 aut | |
700 | 1 | |a de Jager, S. |4 aut | |
700 | 1 | |a Ackermann, H. |4 aut | |
700 | 1 | |a Breytenbach, I. |4 aut | |
700 | 1 | |a Okada, A. |4 aut | |
700 | 1 | |a Usami, M. |4 aut | |
700 | 1 | |a Hirose, Y. |4 aut | |
700 | 1 | |a Ando, R. |4 aut | |
700 | 1 | |a Yasui, T. |4 aut | |
700 | 1 | |a Kohri, K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Urological research |d Berlin : Springer, 1973 |g 44(2015), 4 vom: 31. Dez., Seite 299-310 |w (DE-627)254236901 |w (DE-600)1461962-3 |x 1434-0879 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2015 |g number:4 |g day:31 |g month:12 |g pages:299-310 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00240-015-0855-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
951 | |a AR | ||
952 | |d 44 |j 2015 |e 4 |b 31 |c 12 |h 299-310 |
author_variant |
a r ar m m mm i d id j l jl j s d js jsd h a ha i b ib a o ao m u mu y h yh r a ra t y ty k k kk |
---|---|
matchkey_str |
article:14340879:2015----::oesihnnixdnseuehpyiohmclnprxdtvrsfcosoclimxltnprltissnuasiosu |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00240-015-0855-4 doi (DE-627)SPR002724294 (SPR)s00240-015-0855-4-e DE-627 ger DE-627 rakwb eng Rodgers, A. verfasserin aut Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 Mokoena, M. aut Durbach, I. aut Lazarus, J. aut de Jager, S. aut Ackermann, H. aut Breytenbach, I. aut Okada, A. aut Usami, M. aut Hirose, Y. aut Ando, R. aut Yasui, T. aut Kohri, K. aut Enthalten in Urological research Berlin : Springer, 1973 44(2015), 4 vom: 31. Dez., Seite 299-310 (DE-627)254236901 (DE-600)1461962-3 1434-0879 nnns volume:44 year:2015 number:4 day:31 month:12 pages:299-310 https://dx.doi.org/10.1007/s00240-015-0855-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 AR 44 2015 4 31 12 299-310 |
spelling |
10.1007/s00240-015-0855-4 doi (DE-627)SPR002724294 (SPR)s00240-015-0855-4-e DE-627 ger DE-627 rakwb eng Rodgers, A. verfasserin aut Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 Mokoena, M. aut Durbach, I. aut Lazarus, J. aut de Jager, S. aut Ackermann, H. aut Breytenbach, I. aut Okada, A. aut Usami, M. aut Hirose, Y. aut Ando, R. aut Yasui, T. aut Kohri, K. aut Enthalten in Urological research Berlin : Springer, 1973 44(2015), 4 vom: 31. Dez., Seite 299-310 (DE-627)254236901 (DE-600)1461962-3 1434-0879 nnns volume:44 year:2015 number:4 day:31 month:12 pages:299-310 https://dx.doi.org/10.1007/s00240-015-0855-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 AR 44 2015 4 31 12 299-310 |
allfields_unstemmed |
10.1007/s00240-015-0855-4 doi (DE-627)SPR002724294 (SPR)s00240-015-0855-4-e DE-627 ger DE-627 rakwb eng Rodgers, A. verfasserin aut Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 Mokoena, M. aut Durbach, I. aut Lazarus, J. aut de Jager, S. aut Ackermann, H. aut Breytenbach, I. aut Okada, A. aut Usami, M. aut Hirose, Y. aut Ando, R. aut Yasui, T. aut Kohri, K. aut Enthalten in Urological research Berlin : Springer, 1973 44(2015), 4 vom: 31. Dez., Seite 299-310 (DE-627)254236901 (DE-600)1461962-3 1434-0879 nnns volume:44 year:2015 number:4 day:31 month:12 pages:299-310 https://dx.doi.org/10.1007/s00240-015-0855-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 AR 44 2015 4 31 12 299-310 |
allfieldsGer |
10.1007/s00240-015-0855-4 doi (DE-627)SPR002724294 (SPR)s00240-015-0855-4-e DE-627 ger DE-627 rakwb eng Rodgers, A. verfasserin aut Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 Mokoena, M. aut Durbach, I. aut Lazarus, J. aut de Jager, S. aut Ackermann, H. aut Breytenbach, I. aut Okada, A. aut Usami, M. aut Hirose, Y. aut Ando, R. aut Yasui, T. aut Kohri, K. aut Enthalten in Urological research Berlin : Springer, 1973 44(2015), 4 vom: 31. Dez., Seite 299-310 (DE-627)254236901 (DE-600)1461962-3 1434-0879 nnns volume:44 year:2015 number:4 day:31 month:12 pages:299-310 https://dx.doi.org/10.1007/s00240-015-0855-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 AR 44 2015 4 31 12 299-310 |
allfieldsSound |
10.1007/s00240-015-0855-4 doi (DE-627)SPR002724294 (SPR)s00240-015-0855-4-e DE-627 ger DE-627 rakwb eng Rodgers, A. verfasserin aut Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 Mokoena, M. aut Durbach, I. aut Lazarus, J. aut de Jager, S. aut Ackermann, H. aut Breytenbach, I. aut Okada, A. aut Usami, M. aut Hirose, Y. aut Ando, R. aut Yasui, T. aut Kohri, K. aut Enthalten in Urological research Berlin : Springer, 1973 44(2015), 4 vom: 31. Dez., Seite 299-310 (DE-627)254236901 (DE-600)1461962-3 1434-0879 nnns volume:44 year:2015 number:4 day:31 month:12 pages:299-310 https://dx.doi.org/10.1007/s00240-015-0855-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 AR 44 2015 4 31 12 299-310 |
language |
English |
source |
Enthalten in Urological research 44(2015), 4 vom: 31. Dez., Seite 299-310 volume:44 year:2015 number:4 day:31 month:12 pages:299-310 |
sourceStr |
Enthalten in Urological research 44(2015), 4 vom: 31. Dez., Seite 299-310 volume:44 year:2015 number:4 day:31 month:12 pages:299-310 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Antioxidants Calcium oxalate Crystallization risk factors Rooibos tea Green tea Nephrolithiasis Peroxidative risk factors |
isfreeaccess_bool |
false |
container_title |
Urological research |
authorswithroles_txt_mv |
Rodgers, A. @@aut@@ Mokoena, M. @@aut@@ Durbach, I. @@aut@@ Lazarus, J. @@aut@@ de Jager, S. @@aut@@ Ackermann, H. @@aut@@ Breytenbach, I. @@aut@@ Okada, A. @@aut@@ Usami, M. @@aut@@ Hirose, Y. @@aut@@ Ando, R. @@aut@@ Yasui, T. @@aut@@ Kohri, K. @@aut@@ |
publishDateDaySort_date |
2015-12-31T00:00:00Z |
hierarchy_top_id |
254236901 |
id |
SPR002724294 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR002724294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00240-015-0855-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR002724294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00240-015-0855-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodgers, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium oxalate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization risk factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rooibos tea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green tea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nephrolithiasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxidative risk factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mokoena, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durbach, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lazarus, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jager, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ackermann, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Breytenbach, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okada, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usami, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirose, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ando, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yasui, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohri, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Urological research</subfield><subfield code="d">Berlin : Springer, 1973</subfield><subfield code="g">44(2015), 4 vom: 31. Dez., Seite 299-310</subfield><subfield code="w">(DE-627)254236901</subfield><subfield code="w">(DE-600)1461962-3</subfield><subfield code="x">1434-0879</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:31</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:299-310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00240-015-0855-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">31</subfield><subfield code="c">12</subfield><subfield code="h">299-310</subfield></datafield></record></collection>
|
author |
Rodgers, A. |
spellingShingle |
Rodgers, A. misc Antioxidants misc Calcium oxalate misc Crystallization risk factors misc Rooibos tea misc Green tea misc Nephrolithiasis misc Peroxidative risk factors Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
authorStr |
Rodgers, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254236901 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1434-0879 |
topic_title |
Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea Antioxidants (dpeaa)DE-He213 Calcium oxalate (dpeaa)DE-He213 Crystallization risk factors (dpeaa)DE-He213 Rooibos tea (dpeaa)DE-He213 Green tea (dpeaa)DE-He213 Nephrolithiasis (dpeaa)DE-He213 Peroxidative risk factors (dpeaa)DE-He213 |
topic |
misc Antioxidants misc Calcium oxalate misc Crystallization risk factors misc Rooibos tea misc Green tea misc Nephrolithiasis misc Peroxidative risk factors |
topic_unstemmed |
misc Antioxidants misc Calcium oxalate misc Crystallization risk factors misc Rooibos tea misc Green tea misc Nephrolithiasis misc Peroxidative risk factors |
topic_browse |
misc Antioxidants misc Calcium oxalate misc Crystallization risk factors misc Rooibos tea misc Green tea misc Nephrolithiasis misc Peroxidative risk factors |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Urological research |
hierarchy_parent_id |
254236901 |
hierarchy_top_title |
Urological research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254236901 (DE-600)1461962-3 |
title |
Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
ctrlnum |
(DE-627)SPR002724294 (SPR)s00240-015-0855-4-e |
title_full |
Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
author_sort |
Rodgers, A. |
journal |
Urological research |
journalStr |
Urological research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
299 |
author_browse |
Rodgers, A. Mokoena, M. Durbach, I. Lazarus, J. de Jager, S. Ackermann, H. Breytenbach, I. Okada, A. Usami, M. Hirose, Y. Ando, R. Yasui, T. Kohri, K. |
container_volume |
44 |
format_se |
Elektronische Aufsätze |
author-letter |
Rodgers, A. |
doi_str_mv |
10.1007/s00240-015-0855-4 |
title_sort |
do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? pilot studies with rooibos herbal tea and japanese green tea |
title_auth |
Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
abstract |
Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2129 |
container_issue |
4 |
title_short |
Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea |
url |
https://dx.doi.org/10.1007/s00240-015-0855-4 |
remote_bool |
true |
author2 |
Mokoena, M. Durbach, I. Lazarus, J. de Jager, S. Ackermann, H. Breytenbach, I. Okada, A. Usami, M. Hirose, Y. Ando, R. Yasui, T. Kohri, K. |
author2Str |
Mokoena, M. Durbach, I. Lazarus, J. de Jager, S. Ackermann, H. Breytenbach, I. Okada, A. Usami, M. Hirose, Y. Ando, R. Yasui, T. Kohri, K. |
ppnlink |
254236901 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00240-015-0855-4 |
up_date |
2024-07-03T14:47:48.464Z |
_version_ |
1803569666161901568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR002724294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519163842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00240-015-0855-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR002724294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00240-015-0855-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodgers, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several experimental and animal studies have demonstrated that substances rich in antioxidants can reduce the physicochemical and peroxidative risk factors for calcium oxalate (CaOx) renal stone formation in urine and blood. However, there are very few such investigations in humans. In the present pilot study, two varieties of tea, a green one from Japan (JGT) and a herbal one from South Africa (Rooibos) (RT), both rich in antioxidants, were administered to a group of CaOx stone formers (SF) (n = 8) for 30 days. Both teas were analysed for polyphenols by high-performance liquid chromatography and for minerals by plasma atomic and optical emission spectroscopy. 24 h urines (baseline and day 30) were analysed for lithogenic factors. CaOx metastable limits and crystal nucleation and growth kinetics were also determined in each urine sample. Deposited crystals were inspected by scanning electron microscopy. Blood samples were collected (baseline and day 30). Biomarkers of oxidative stress including plasma and urinary thiobarbituric acid reactive substances (TBARS) and urinary N-acetyl-β-D-glucosaminidase (NAG) were also determined. Urinary physicochemical risk factors were also investigated after ingestion of RT for 30 days in two control groups (CG1 and CG2), the latter one of which consisted of habitual JGT drinkers. Statistical analyses were performed using Wilcoxon signed rank tests and Mann–Whitney tests for paired and independent measurements, respectively. Several flavonoids and catechins were quantified in RT and JGT, respectively, confirming that both teas are rich sources of antioxidants. Mineral content was found to be far below dietary reference intakes. There were no significant changes in any of the urinary physicochemical or peroxidative risk factors in the control groups or in SF, except for the supersaturation (SS) of brushite (Bru) which decreased in the latter group after ingestion of JGT. Crystal morphology showed a tendency to change from mixed CaOx mono- and di-hydrate to monohydrate after ingestion of each tea. Since the latter form has a stronger binding affinity for epithelial cells, this effect is not protective. Analysis of the physicochemical and peroxidative risk factors in CG1 and CG2 did not reveal any evidence of a synergistic effect between the two teas. Paradoxically, baseline risk factors in the habitual JGT control group were significantly raised relative to those in CG1. Our preliminary results suggest that ingestion of RT and JGT does not reduce the risk factors for CaOx stone formation in humans, but these findings need to be tested in further studies involving much larger sample sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium oxalate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization risk factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rooibos tea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green tea</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nephrolithiasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxidative risk factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mokoena, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durbach, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lazarus, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jager, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ackermann, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Breytenbach, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okada, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usami, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirose, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ando, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yasui, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohri, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Urological research</subfield><subfield code="d">Berlin : Springer, 1973</subfield><subfield code="g">44(2015), 4 vom: 31. Dez., Seite 299-310</subfield><subfield code="w">(DE-627)254236901</subfield><subfield code="w">(DE-600)1461962-3</subfield><subfield code="x">1434-0879</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:31</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:299-310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00240-015-0855-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">31</subfield><subfield code="c">12</subfield><subfield code="h">299-310</subfield></datafield></record></collection>
|
score |
7.4017296 |