Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems
Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining...
Ausführliche Beschreibung
Autor*in: |
Wang, Peili [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Microbial ecology - New York, NY : Springer, 1974, 63(2011), 2 vom: 03. Aug., Seite 369-382 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2011 ; number:2 ; day:03 ; month:08 ; pages:369-382 |
Links: |
---|
DOI / URN: |
10.1007/s00248-011-9917-5 |
---|
Katalog-ID: |
SPR002881934 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR002881934 | ||
003 | DE-627 | ||
005 | 20230519080522.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00248-011-9917-5 |2 doi | |
035 | |a (DE-627)SPR002881934 | ||
035 | |a (SPR)s00248-011-9917-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Peili |e verfasserin |4 aut | |
245 | 1 | 0 | |a Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. | ||
650 | 4 | |a Phytoplankton |7 (dpeaa)DE-He213 | |
650 | 4 | |a Total Phosphorus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Alkaline Phosphatase Activity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cyclotella |7 (dpeaa)DE-He213 | |
650 | 4 | |a Standing Condition |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shen, Hong |4 aut | |
700 | 1 | |a Xie, Ping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microbial ecology |d New York, NY : Springer, 1974 |g 63(2011), 2 vom: 03. Aug., Seite 369-382 |w (DE-627)254630197 |w (DE-600)1462065-0 |x 1432-184X |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2011 |g number:2 |g day:03 |g month:08 |g pages:369-382 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00248-011-9917-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2939 | ||
912 | |a GBV_ILN_2946 | ||
912 | |a GBV_ILN_2949 | ||
912 | |a GBV_ILN_2951 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4346 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 63 |j 2011 |e 2 |b 03 |c 08 |h 369-382 |
author_variant |
p w pw h s hs p x px |
---|---|
matchkey_str |
article:1432184X:2011----::ahdoyaishnehshrstaeisfitmntinlvladitmlo |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00248-011-9917-5 doi (DE-627)SPR002881934 (SPR)s00248-011-9917-5-e DE-627 ger DE-627 rakwb eng Wang, Peili verfasserin aut Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 Shen, Hong aut Xie, Ping aut Enthalten in Microbial ecology New York, NY : Springer, 1974 63(2011), 2 vom: 03. Aug., Seite 369-382 (DE-627)254630197 (DE-600)1462065-0 1432-184X nnns volume:63 year:2011 number:2 day:03 month:08 pages:369-382 https://dx.doi.org/10.1007/s00248-011-9917-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 AR 63 2011 2 03 08 369-382 |
spelling |
10.1007/s00248-011-9917-5 doi (DE-627)SPR002881934 (SPR)s00248-011-9917-5-e DE-627 ger DE-627 rakwb eng Wang, Peili verfasserin aut Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 Shen, Hong aut Xie, Ping aut Enthalten in Microbial ecology New York, NY : Springer, 1974 63(2011), 2 vom: 03. Aug., Seite 369-382 (DE-627)254630197 (DE-600)1462065-0 1432-184X nnns volume:63 year:2011 number:2 day:03 month:08 pages:369-382 https://dx.doi.org/10.1007/s00248-011-9917-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 AR 63 2011 2 03 08 369-382 |
allfields_unstemmed |
10.1007/s00248-011-9917-5 doi (DE-627)SPR002881934 (SPR)s00248-011-9917-5-e DE-627 ger DE-627 rakwb eng Wang, Peili verfasserin aut Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 Shen, Hong aut Xie, Ping aut Enthalten in Microbial ecology New York, NY : Springer, 1974 63(2011), 2 vom: 03. Aug., Seite 369-382 (DE-627)254630197 (DE-600)1462065-0 1432-184X nnns volume:63 year:2011 number:2 day:03 month:08 pages:369-382 https://dx.doi.org/10.1007/s00248-011-9917-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 AR 63 2011 2 03 08 369-382 |
allfieldsGer |
10.1007/s00248-011-9917-5 doi (DE-627)SPR002881934 (SPR)s00248-011-9917-5-e DE-627 ger DE-627 rakwb eng Wang, Peili verfasserin aut Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 Shen, Hong aut Xie, Ping aut Enthalten in Microbial ecology New York, NY : Springer, 1974 63(2011), 2 vom: 03. Aug., Seite 369-382 (DE-627)254630197 (DE-600)1462065-0 1432-184X nnns volume:63 year:2011 number:2 day:03 month:08 pages:369-382 https://dx.doi.org/10.1007/s00248-011-9917-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 AR 63 2011 2 03 08 369-382 |
allfieldsSound |
10.1007/s00248-011-9917-5 doi (DE-627)SPR002881934 (SPR)s00248-011-9917-5-e DE-627 ger DE-627 rakwb eng Wang, Peili verfasserin aut Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 Shen, Hong aut Xie, Ping aut Enthalten in Microbial ecology New York, NY : Springer, 1974 63(2011), 2 vom: 03. Aug., Seite 369-382 (DE-627)254630197 (DE-600)1462065-0 1432-184X nnns volume:63 year:2011 number:2 day:03 month:08 pages:369-382 https://dx.doi.org/10.1007/s00248-011-9917-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 AR 63 2011 2 03 08 369-382 |
language |
English |
source |
Enthalten in Microbial ecology 63(2011), 2 vom: 03. Aug., Seite 369-382 volume:63 year:2011 number:2 day:03 month:08 pages:369-382 |
sourceStr |
Enthalten in Microbial ecology 63(2011), 2 vom: 03. Aug., Seite 369-382 volume:63 year:2011 number:2 day:03 month:08 pages:369-382 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phytoplankton Total Phosphorus Alkaline Phosphatase Activity Cyclotella Standing Condition |
isfreeaccess_bool |
false |
container_title |
Microbial ecology |
authorswithroles_txt_mv |
Wang, Peili @@aut@@ Shen, Hong @@aut@@ Xie, Ping @@aut@@ |
publishDateDaySort_date |
2011-08-03T00:00:00Z |
hierarchy_top_id |
254630197 |
id |
SPR002881934 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR002881934</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00248-011-9917-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR002881934</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00248-011-9917-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Peili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytoplankton</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Phosphorus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline Phosphatase Activity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclotella</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standing Condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial ecology</subfield><subfield code="d">New York, NY : Springer, 1974</subfield><subfield code="g">63(2011), 2 vom: 03. Aug., Seite 369-382</subfield><subfield code="w">(DE-627)254630197</subfield><subfield code="w">(DE-600)1462065-0</subfield><subfield code="x">1432-184X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:369-382</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00248-011-9917-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2939</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2946</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2949</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2951</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">08</subfield><subfield code="h">369-382</subfield></datafield></record></collection>
|
author |
Wang, Peili |
spellingShingle |
Wang, Peili misc Phytoplankton misc Total Phosphorus misc Alkaline Phosphatase Activity misc Cyclotella misc Standing Condition Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
authorStr |
Wang, Peili |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254630197 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-184X |
topic_title |
Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems Phytoplankton (dpeaa)DE-He213 Total Phosphorus (dpeaa)DE-He213 Alkaline Phosphatase Activity (dpeaa)DE-He213 Cyclotella (dpeaa)DE-He213 Standing Condition (dpeaa)DE-He213 |
topic |
misc Phytoplankton misc Total Phosphorus misc Alkaline Phosphatase Activity misc Cyclotella misc Standing Condition |
topic_unstemmed |
misc Phytoplankton misc Total Phosphorus misc Alkaline Phosphatase Activity misc Cyclotella misc Standing Condition |
topic_browse |
misc Phytoplankton misc Total Phosphorus misc Alkaline Phosphatase Activity misc Cyclotella misc Standing Condition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbial ecology |
hierarchy_parent_id |
254630197 |
hierarchy_top_title |
Microbial ecology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254630197 (DE-600)1462065-0 |
title |
Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
ctrlnum |
(DE-627)SPR002881934 (SPR)s00248-011-9917-5-e |
title_full |
Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
author_sort |
Wang, Peili |
journal |
Microbial ecology |
journalStr |
Microbial ecology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
369 |
author_browse |
Wang, Peili Shen, Hong Xie, Ping |
container_volume |
63 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Peili |
doi_str_mv |
10.1007/s00248-011-9917-5 |
title_sort |
can hydrodynamics change phosphorus strategies of diatoms?—nutrient levels and diatom blooms in lotic and lentic ecosystems |
title_auth |
Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
abstract |
Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2939 GBV_ILN_2946 GBV_ILN_2949 GBV_ILN_2951 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems |
url |
https://dx.doi.org/10.1007/s00248-011-9917-5 |
remote_bool |
true |
author2 |
Shen, Hong Xie, Ping |
author2Str |
Shen, Hong Xie, Ping |
ppnlink |
254630197 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00248-011-9917-5 |
up_date |
2024-07-03T15:48:15.090Z |
_version_ |
1803573468952788992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR002881934</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00248-011-9917-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR002881934</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00248-011-9917-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Peili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can Hydrodynamics Change Phosphorus Strategies of Diatoms?—Nutrient Levels and Diatom Blooms in Lotic and Lentic Ecosystems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen ($ NH_{4} $-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytoplankton</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Phosphorus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkaline Phosphatase Activity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclotella</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Standing Condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial ecology</subfield><subfield code="d">New York, NY : Springer, 1974</subfield><subfield code="g">63(2011), 2 vom: 03. Aug., Seite 369-382</subfield><subfield code="w">(DE-627)254630197</subfield><subfield code="w">(DE-600)1462065-0</subfield><subfield code="x">1432-184X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:369-382</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00248-011-9917-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2939</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2946</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2949</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2951</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">08</subfield><subfield code="h">369-382</subfield></datafield></record></collection>
|
score |
7.400819 |