Reader agreement and accuracy of ultrasound features for hepatic steatosis
Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known...
Ausführliche Beschreibung
Autor*in: |
Hong, Cheng William [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Abdominal radiology - [Boston, MA] : Springer US, 2016, 44(2018), 1 vom: 28. Juni, Seite 54-64 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2018 ; number:1 ; day:28 ; month:06 ; pages:54-64 |
Links: |
---|
DOI / URN: |
10.1007/s00261-018-1683-0 |
---|
Katalog-ID: |
SPR003208435 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR003208435 | ||
003 | DE-627 | ||
005 | 20230520002606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00261-018-1683-0 |2 doi | |
035 | |a (DE-627)SPR003208435 | ||
035 | |a (SPR)s00261-018-1683-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hong, Cheng William |e verfasserin |0 (orcid)0000-0002-5219-6039 |4 aut | |
245 | 1 | 0 | |a Reader agreement and accuracy of ultrasound features for hepatic steatosis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. | ||
700 | 1 | |a Marsh, Austin |4 aut | |
700 | 1 | |a Wolfson, Tanya |4 aut | |
700 | 1 | |a Paige, Jeremy |4 aut | |
700 | 1 | |a Dekhordy, Soudabeh Fazeli |4 aut | |
700 | 1 | |a Schlein, Alexandra N. |4 aut | |
700 | 1 | |a Housman, Elise |4 aut | |
700 | 1 | |a Deiranieh, Lisa H. |4 aut | |
700 | 1 | |a Li, Charles Q. |4 aut | |
700 | 1 | |a Wasnik, Ashish P. |4 aut | |
700 | 1 | |a Jang, Hyun-Jung |4 aut | |
700 | 1 | |a Dietrich, Christoph F. |4 aut | |
700 | 1 | |a Piscaglia, Fabio |4 aut | |
700 | 1 | |a Casola, Giovanna |4 aut | |
700 | 1 | |a O’Boyle, Mary |4 aut | |
700 | 1 | |a Richman, Katherine M. |4 aut | |
700 | 1 | |a Valasek, Mark A. |4 aut | |
700 | 1 | |a Andre, Michael |4 aut | |
700 | 1 | |a Loomba, Rohit |4 aut | |
700 | 1 | |a Sirlin, Claude B. |0 (orcid)0000-0002-6639-9072 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Abdominal radiology |d [Boston, MA] : Springer US, 2016 |g 44(2018), 1 vom: 28. Juni, Seite 54-64 |w (DE-627)847023133 |w (DE-600)2845742-0 |x 2366-0058 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2018 |g number:1 |g day:28 |g month:06 |g pages:54-64 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00261-018-1683-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2018 |e 1 |b 28 |c 06 |h 54-64 |
author_variant |
c w h cw cwh a m am t w tw j p jp s f d sf sfd a n s an ans e h eh l h d lh lhd c q l cq cql a p w ap apw h j j hjj c f d cf cfd f p fp g c gc m o mo k m r km kmr m a v ma mav m a ma r l rl c b s cb cbs |
---|---|
matchkey_str |
article:23660058:2018----::edrgemnadcuayflrsudetrso |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00261-018-1683-0 doi (DE-627)SPR003208435 (SPR)s00261-018-1683-0-e DE-627 ger DE-627 rakwb eng Hong, Cheng William verfasserin (orcid)0000-0002-5219-6039 aut Reader agreement and accuracy of ultrasound features for hepatic steatosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. Marsh, Austin aut Wolfson, Tanya aut Paige, Jeremy aut Dekhordy, Soudabeh Fazeli aut Schlein, Alexandra N. aut Housman, Elise aut Deiranieh, Lisa H. aut Li, Charles Q. aut Wasnik, Ashish P. aut Jang, Hyun-Jung aut Dietrich, Christoph F. aut Piscaglia, Fabio aut Casola, Giovanna aut O’Boyle, Mary aut Richman, Katherine M. aut Valasek, Mark A. aut Andre, Michael aut Loomba, Rohit aut Sirlin, Claude B. (orcid)0000-0002-6639-9072 aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 1 vom: 28. Juni, Seite 54-64 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:1 day:28 month:06 pages:54-64 https://dx.doi.org/10.1007/s00261-018-1683-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 1 28 06 54-64 |
spelling |
10.1007/s00261-018-1683-0 doi (DE-627)SPR003208435 (SPR)s00261-018-1683-0-e DE-627 ger DE-627 rakwb eng Hong, Cheng William verfasserin (orcid)0000-0002-5219-6039 aut Reader agreement and accuracy of ultrasound features for hepatic steatosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. Marsh, Austin aut Wolfson, Tanya aut Paige, Jeremy aut Dekhordy, Soudabeh Fazeli aut Schlein, Alexandra N. aut Housman, Elise aut Deiranieh, Lisa H. aut Li, Charles Q. aut Wasnik, Ashish P. aut Jang, Hyun-Jung aut Dietrich, Christoph F. aut Piscaglia, Fabio aut Casola, Giovanna aut O’Boyle, Mary aut Richman, Katherine M. aut Valasek, Mark A. aut Andre, Michael aut Loomba, Rohit aut Sirlin, Claude B. (orcid)0000-0002-6639-9072 aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 1 vom: 28. Juni, Seite 54-64 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:1 day:28 month:06 pages:54-64 https://dx.doi.org/10.1007/s00261-018-1683-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 1 28 06 54-64 |
allfields_unstemmed |
10.1007/s00261-018-1683-0 doi (DE-627)SPR003208435 (SPR)s00261-018-1683-0-e DE-627 ger DE-627 rakwb eng Hong, Cheng William verfasserin (orcid)0000-0002-5219-6039 aut Reader agreement and accuracy of ultrasound features for hepatic steatosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. Marsh, Austin aut Wolfson, Tanya aut Paige, Jeremy aut Dekhordy, Soudabeh Fazeli aut Schlein, Alexandra N. aut Housman, Elise aut Deiranieh, Lisa H. aut Li, Charles Q. aut Wasnik, Ashish P. aut Jang, Hyun-Jung aut Dietrich, Christoph F. aut Piscaglia, Fabio aut Casola, Giovanna aut O’Boyle, Mary aut Richman, Katherine M. aut Valasek, Mark A. aut Andre, Michael aut Loomba, Rohit aut Sirlin, Claude B. (orcid)0000-0002-6639-9072 aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 1 vom: 28. Juni, Seite 54-64 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:1 day:28 month:06 pages:54-64 https://dx.doi.org/10.1007/s00261-018-1683-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 1 28 06 54-64 |
allfieldsGer |
10.1007/s00261-018-1683-0 doi (DE-627)SPR003208435 (SPR)s00261-018-1683-0-e DE-627 ger DE-627 rakwb eng Hong, Cheng William verfasserin (orcid)0000-0002-5219-6039 aut Reader agreement and accuracy of ultrasound features for hepatic steatosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. Marsh, Austin aut Wolfson, Tanya aut Paige, Jeremy aut Dekhordy, Soudabeh Fazeli aut Schlein, Alexandra N. aut Housman, Elise aut Deiranieh, Lisa H. aut Li, Charles Q. aut Wasnik, Ashish P. aut Jang, Hyun-Jung aut Dietrich, Christoph F. aut Piscaglia, Fabio aut Casola, Giovanna aut O’Boyle, Mary aut Richman, Katherine M. aut Valasek, Mark A. aut Andre, Michael aut Loomba, Rohit aut Sirlin, Claude B. (orcid)0000-0002-6639-9072 aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 1 vom: 28. Juni, Seite 54-64 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:1 day:28 month:06 pages:54-64 https://dx.doi.org/10.1007/s00261-018-1683-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 1 28 06 54-64 |
allfieldsSound |
10.1007/s00261-018-1683-0 doi (DE-627)SPR003208435 (SPR)s00261-018-1683-0-e DE-627 ger DE-627 rakwb eng Hong, Cheng William verfasserin (orcid)0000-0002-5219-6039 aut Reader agreement and accuracy of ultrasound features for hepatic steatosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. Marsh, Austin aut Wolfson, Tanya aut Paige, Jeremy aut Dekhordy, Soudabeh Fazeli aut Schlein, Alexandra N. aut Housman, Elise aut Deiranieh, Lisa H. aut Li, Charles Q. aut Wasnik, Ashish P. aut Jang, Hyun-Jung aut Dietrich, Christoph F. aut Piscaglia, Fabio aut Casola, Giovanna aut O’Boyle, Mary aut Richman, Katherine M. aut Valasek, Mark A. aut Andre, Michael aut Loomba, Rohit aut Sirlin, Claude B. (orcid)0000-0002-6639-9072 aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 1 vom: 28. Juni, Seite 54-64 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:1 day:28 month:06 pages:54-64 https://dx.doi.org/10.1007/s00261-018-1683-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 1 28 06 54-64 |
language |
English |
source |
Enthalten in Abdominal radiology 44(2018), 1 vom: 28. Juni, Seite 54-64 volume:44 year:2018 number:1 day:28 month:06 pages:54-64 |
sourceStr |
Enthalten in Abdominal radiology 44(2018), 1 vom: 28. Juni, Seite 54-64 volume:44 year:2018 number:1 day:28 month:06 pages:54-64 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Abdominal radiology |
authorswithroles_txt_mv |
Hong, Cheng William @@aut@@ Marsh, Austin @@aut@@ Wolfson, Tanya @@aut@@ Paige, Jeremy @@aut@@ Dekhordy, Soudabeh Fazeli @@aut@@ Schlein, Alexandra N. @@aut@@ Housman, Elise @@aut@@ Deiranieh, Lisa H. @@aut@@ Li, Charles Q. @@aut@@ Wasnik, Ashish P. @@aut@@ Jang, Hyun-Jung @@aut@@ Dietrich, Christoph F. @@aut@@ Piscaglia, Fabio @@aut@@ Casola, Giovanna @@aut@@ O’Boyle, Mary @@aut@@ Richman, Katherine M. @@aut@@ Valasek, Mark A. @@aut@@ Andre, Michael @@aut@@ Loomba, Rohit @@aut@@ Sirlin, Claude B. @@aut@@ |
publishDateDaySort_date |
2018-06-28T00:00:00Z |
hierarchy_top_id |
847023133 |
id |
SPR003208435 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003208435</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-018-1683-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003208435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-018-1683-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Cheng William</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5219-6039</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reader agreement and accuracy of ultrasound features for hepatic steatosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marsh, Austin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolfson, Tanya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paige, Jeremy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dekhordy, Soudabeh Fazeli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlein, Alexandra N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Housman, Elise</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deiranieh, Lisa H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Charles Q.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasnik, Ashish P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Hyun-Jung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dietrich, Christoph F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piscaglia, Fabio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casola, Giovanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Boyle, Mary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richman, Katherine M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valasek, Mark A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andre, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loomba, Rohit</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sirlin, Claude B.</subfield><subfield code="0">(orcid)0000-0002-6639-9072</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">44(2018), 1 vom: 28. Juni, Seite 54-64</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:54-64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-018-1683-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield><subfield code="h">54-64</subfield></datafield></record></collection>
|
author |
Hong, Cheng William |
spellingShingle |
Hong, Cheng William Reader agreement and accuracy of ultrasound features for hepatic steatosis |
authorStr |
Hong, Cheng William |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)847023133 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2366-0058 |
topic_title |
Reader agreement and accuracy of ultrasound features for hepatic steatosis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Abdominal radiology |
hierarchy_parent_id |
847023133 |
hierarchy_top_title |
Abdominal radiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)847023133 (DE-600)2845742-0 |
title |
Reader agreement and accuracy of ultrasound features for hepatic steatosis |
ctrlnum |
(DE-627)SPR003208435 (SPR)s00261-018-1683-0-e |
title_full |
Reader agreement and accuracy of ultrasound features for hepatic steatosis |
author_sort |
Hong, Cheng William |
journal |
Abdominal radiology |
journalStr |
Abdominal radiology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
54 |
author_browse |
Hong, Cheng William Marsh, Austin Wolfson, Tanya Paige, Jeremy Dekhordy, Soudabeh Fazeli Schlein, Alexandra N. Housman, Elise Deiranieh, Lisa H. Li, Charles Q. Wasnik, Ashish P. Jang, Hyun-Jung Dietrich, Christoph F. Piscaglia, Fabio Casola, Giovanna O’Boyle, Mary Richman, Katherine M. Valasek, Mark A. Andre, Michael Loomba, Rohit Sirlin, Claude B. |
container_volume |
44 |
format_se |
Elektronische Aufsätze |
author-letter |
Hong, Cheng William |
doi_str_mv |
10.1007/s00261-018-1683-0 |
normlink |
(ORCID)0000-0002-5219-6039 (ORCID)0000-0002-6639-9072 |
normlink_prefix_str_mv |
(orcid)0000-0002-5219-6039 (orcid)0000-0002-6639-9072 |
title_sort |
reader agreement and accuracy of ultrasound features for hepatic steatosis |
title_auth |
Reader agreement and accuracy of ultrasound features for hepatic steatosis |
abstract |
Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Reader agreement and accuracy of ultrasound features for hepatic steatosis |
url |
https://dx.doi.org/10.1007/s00261-018-1683-0 |
remote_bool |
true |
author2 |
Marsh, Austin Wolfson, Tanya Paige, Jeremy Dekhordy, Soudabeh Fazeli Schlein, Alexandra N. Housman, Elise Deiranieh, Lisa H. Li, Charles Q. Wasnik, Ashish P. Jang, Hyun-Jung Dietrich, Christoph F. Piscaglia, Fabio Casola, Giovanna O’Boyle, Mary Richman, Katherine M. Valasek, Mark A. Andre, Michael Loomba, Rohit Sirlin, Claude B. |
author2Str |
Marsh, Austin Wolfson, Tanya Paige, Jeremy Dekhordy, Soudabeh Fazeli Schlein, Alexandra N. Housman, Elise Deiranieh, Lisa H. Li, Charles Q. Wasnik, Ashish P. Jang, Hyun-Jung Dietrich, Christoph F. Piscaglia, Fabio Casola, Giovanna O’Boyle, Mary Richman, Katherine M. Valasek, Mark A. Andre, Michael Loomba, Rohit Sirlin, Claude B. |
ppnlink |
847023133 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00261-018-1683-0 |
up_date |
2024-07-03T17:59:49.065Z |
_version_ |
1803581746392858624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003208435</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-018-1683-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003208435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-018-1683-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Cheng William</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5219-6039</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reader agreement and accuracy of ultrasound features for hepatic steatosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The purpose of the study is to assess the reader agreement and accuracy of eight ultrasound imaging features for classifying hepatic steatosis in adults with known or suspected hepatic steatosis. Methods This was an IRB-approved, HIPAA-compliant prospective study of adult patients with known or suspected hepatic steatosis. All patients signed written informed consent. Ultrasound images (Siemens S3000, 6C1HD, and 4C1 transducers) were acquired by experienced sonographers following a standard protocol. Eight readers independently graded eight features and their overall impression of hepatic steatosis on ordinal scales using an electronic case report form. Duplicated images from the 6C1HD transducer were read twice to assess intra-reader agreement. Intra-reader, inter-transducer, and inter-reader agreement were assessed using intraclass correlation coefficients (ICC). Features with the highest intra-reader agreement were selected as predictors for dichotomized histological steatosis using Classification and Regression Tree (CART) analysis, and the accuracy of the decision rule was compared to the accuracy of the radiologists’ overall impression. Results 45 patients (18 males, 27 females; mean age 56 ± 12 years) scanned from September 2015 to July 2016 were included. Mean intra-reader ICCs ranged from 0.430 to 0.777, inter-transducer ICCs ranged from 0.228 to 0.640, and inter-reader ICCs ranged from 0.014 to 0.561. The CART decision rule selected only large hepatic vein blurring and achieved similar accuracy to the overall impression (74% to 75% and 68% to 72%, respectively). Conclusions Large hepatic vein blurring, liver–kidney contrast, and overall impression provided the highest reader agreement. Large hepatic vein blurring may provide the highest classification accuracy for dichotomized grading of hepatic steatosis.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marsh, Austin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolfson, Tanya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paige, Jeremy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dekhordy, Soudabeh Fazeli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlein, Alexandra N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Housman, Elise</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deiranieh, Lisa H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Charles Q.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasnik, Ashish P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Hyun-Jung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dietrich, Christoph F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piscaglia, Fabio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casola, Giovanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Boyle, Mary</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richman, Katherine M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valasek, Mark A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andre, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loomba, Rohit</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sirlin, Claude B.</subfield><subfield code="0">(orcid)0000-0002-6639-9072</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">44(2018), 1 vom: 28. Juni, Seite 54-64</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:54-64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-018-1683-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield><subfield code="h">54-64</subfield></datafield></record></collection>
|
score |
7.401458 |