Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer
Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric...
Ausführliche Beschreibung
Autor*in: |
Patel, Nayana U. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Abdominal radiology - [Boston, MA] : Springer US, 2016, 44(2018), 2 vom: 31. Aug., Seite 705-712 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2018 ; number:2 ; day:31 ; month:08 ; pages:705-712 |
Links: |
---|
DOI / URN: |
10.1007/s00261-018-1751-5 |
---|
Katalog-ID: |
SPR00320992X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR00320992X | ||
003 | DE-627 | ||
005 | 20230520002609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00261-018-1751-5 |2 doi | |
035 | |a (DE-627)SPR00320992X | ||
035 | |a (SPR)s00261-018-1751-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Patel, Nayana U. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. | ||
650 | 4 | |a Prostate MRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multi-parametric MRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prostate cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinically significant prostate cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a PI-RADS v2 |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lind, Kimberly E. |4 aut | |
700 | 1 | |a Garg, Kavita |4 aut | |
700 | 1 | |a Crawford, David |4 aut | |
700 | 1 | |a Werahera, Priya N. |4 aut | |
700 | 1 | |a Pokharel, Sajal S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Abdominal radiology |d [Boston, MA] : Springer US, 2016 |g 44(2018), 2 vom: 31. Aug., Seite 705-712 |w (DE-627)847023133 |w (DE-600)2845742-0 |x 2366-0058 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2018 |g number:2 |g day:31 |g month:08 |g pages:705-712 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00261-018-1751-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2018 |e 2 |b 31 |c 08 |h 705-712 |
author_variant |
n u p nu nup k e l ke kel k g kg d c dc p n w pn pnw s s p ss ssp |
---|---|
matchkey_str |
article:23660058:2018----::sesetfias2aeoisfrigoiociialsgi |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00261-018-1751-5 doi (DE-627)SPR00320992X (SPR)s00261-018-1751-5-e DE-627 ger DE-627 rakwb eng Patel, Nayana U. verfasserin aut Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 Lind, Kimberly E. aut Garg, Kavita aut Crawford, David aut Werahera, Priya N. aut Pokharel, Sajal S. aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 2 vom: 31. Aug., Seite 705-712 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:2 day:31 month:08 pages:705-712 https://dx.doi.org/10.1007/s00261-018-1751-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 2 31 08 705-712 |
spelling |
10.1007/s00261-018-1751-5 doi (DE-627)SPR00320992X (SPR)s00261-018-1751-5-e DE-627 ger DE-627 rakwb eng Patel, Nayana U. verfasserin aut Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 Lind, Kimberly E. aut Garg, Kavita aut Crawford, David aut Werahera, Priya N. aut Pokharel, Sajal S. aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 2 vom: 31. Aug., Seite 705-712 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:2 day:31 month:08 pages:705-712 https://dx.doi.org/10.1007/s00261-018-1751-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 2 31 08 705-712 |
allfields_unstemmed |
10.1007/s00261-018-1751-5 doi (DE-627)SPR00320992X (SPR)s00261-018-1751-5-e DE-627 ger DE-627 rakwb eng Patel, Nayana U. verfasserin aut Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 Lind, Kimberly E. aut Garg, Kavita aut Crawford, David aut Werahera, Priya N. aut Pokharel, Sajal S. aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 2 vom: 31. Aug., Seite 705-712 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:2 day:31 month:08 pages:705-712 https://dx.doi.org/10.1007/s00261-018-1751-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 2 31 08 705-712 |
allfieldsGer |
10.1007/s00261-018-1751-5 doi (DE-627)SPR00320992X (SPR)s00261-018-1751-5-e DE-627 ger DE-627 rakwb eng Patel, Nayana U. verfasserin aut Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 Lind, Kimberly E. aut Garg, Kavita aut Crawford, David aut Werahera, Priya N. aut Pokharel, Sajal S. aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 2 vom: 31. Aug., Seite 705-712 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:2 day:31 month:08 pages:705-712 https://dx.doi.org/10.1007/s00261-018-1751-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 2 31 08 705-712 |
allfieldsSound |
10.1007/s00261-018-1751-5 doi (DE-627)SPR00320992X (SPR)s00261-018-1751-5-e DE-627 ger DE-627 rakwb eng Patel, Nayana U. verfasserin aut Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 Lind, Kimberly E. aut Garg, Kavita aut Crawford, David aut Werahera, Priya N. aut Pokharel, Sajal S. aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 44(2018), 2 vom: 31. Aug., Seite 705-712 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:44 year:2018 number:2 day:31 month:08 pages:705-712 https://dx.doi.org/10.1007/s00261-018-1751-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 44 2018 2 31 08 705-712 |
language |
English |
source |
Enthalten in Abdominal radiology 44(2018), 2 vom: 31. Aug., Seite 705-712 volume:44 year:2018 number:2 day:31 month:08 pages:705-712 |
sourceStr |
Enthalten in Abdominal radiology 44(2018), 2 vom: 31. Aug., Seite 705-712 volume:44 year:2018 number:2 day:31 month:08 pages:705-712 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Prostate MRI Multi-parametric MRI Prostate cancer Clinically significant prostate cancer PI-RADS v2 |
isfreeaccess_bool |
false |
container_title |
Abdominal radiology |
authorswithroles_txt_mv |
Patel, Nayana U. @@aut@@ Lind, Kimberly E. @@aut@@ Garg, Kavita @@aut@@ Crawford, David @@aut@@ Werahera, Priya N. @@aut@@ Pokharel, Sajal S. @@aut@@ |
publishDateDaySort_date |
2018-08-31T00:00:00Z |
hierarchy_top_id |
847023133 |
id |
SPR00320992X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00320992X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-018-1751-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00320992X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-018-1751-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patel, Nayana U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-parametric MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinically significant prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADS v2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lind, Kimberly E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garg, Kavita</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crawford, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werahera, Priya N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokharel, Sajal S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">44(2018), 2 vom: 31. Aug., Seite 705-712</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:705-712</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-018-1751-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">08</subfield><subfield code="h">705-712</subfield></datafield></record></collection>
|
author |
Patel, Nayana U. |
spellingShingle |
Patel, Nayana U. misc Prostate MRI misc Multi-parametric MRI misc Prostate cancer misc Clinically significant prostate cancer misc PI-RADS v2 Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
authorStr |
Patel, Nayana U. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)847023133 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2366-0058 |
topic_title |
Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer Prostate MRI (dpeaa)DE-He213 Multi-parametric MRI (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Clinically significant prostate cancer (dpeaa)DE-He213 PI-RADS v2 (dpeaa)DE-He213 |
topic |
misc Prostate MRI misc Multi-parametric MRI misc Prostate cancer misc Clinically significant prostate cancer misc PI-RADS v2 |
topic_unstemmed |
misc Prostate MRI misc Multi-parametric MRI misc Prostate cancer misc Clinically significant prostate cancer misc PI-RADS v2 |
topic_browse |
misc Prostate MRI misc Multi-parametric MRI misc Prostate cancer misc Clinically significant prostate cancer misc PI-RADS v2 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Abdominal radiology |
hierarchy_parent_id |
847023133 |
hierarchy_top_title |
Abdominal radiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)847023133 (DE-600)2845742-0 |
title |
Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
ctrlnum |
(DE-627)SPR00320992X (SPR)s00261-018-1751-5-e |
title_full |
Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
author_sort |
Patel, Nayana U. |
journal |
Abdominal radiology |
journalStr |
Abdominal radiology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
705 |
author_browse |
Patel, Nayana U. Lind, Kimberly E. Garg, Kavita Crawford, David Werahera, Priya N. Pokharel, Sajal S. |
container_volume |
44 |
format_se |
Elektronische Aufsätze |
author-letter |
Patel, Nayana U. |
doi_str_mv |
10.1007/s00261-018-1751-5 |
title_sort |
assessment of pi-rads v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
title_auth |
Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
abstract |
Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer |
url |
https://dx.doi.org/10.1007/s00261-018-1751-5 |
remote_bool |
true |
author2 |
Lind, Kimberly E. Garg, Kavita Crawford, David Werahera, Priya N. Pokharel, Sajal S. |
author2Str |
Lind, Kimberly E. Garg, Kavita Crawford, David Werahera, Priya N. Pokharel, Sajal S. |
ppnlink |
847023133 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00261-018-1751-5 |
up_date |
2024-07-03T18:00:28.440Z |
_version_ |
1803581787677392896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00320992X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520002609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-018-1751-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00320992X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-018-1751-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patel, Nayana U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of PI-RADS v2 categories ≥ 3 for diagnosis of clinically significant prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose To assess the diagnostic accuracy of PI-RADS v2 categories ≥ 3 to detect clinically significant prostate cancer (csPCa) against histopathology of Transperineal Mapping Biopsy (TPMB). Materials and methods IRB-approved retrospective cohort study included 47 men who had 3.0 T multi-parametric MRI (mpMRI) and TPMB of prostate. Two radiologists independently evaluated T2, DWI, ADC map, and DCE images using PI-RADS v2 categories. A third radiologist served as tie-breaker. PI-RADS v2 score (PS) ≥ 3 lesions were correlated with 3D model of TPMB (3DTPMB) results based on prostate sectors. Two groups of csPCa status were separately analyzed for accuracy measures at lesion and person levels: Group 1 with GS (Gleason Score) ≥ 7 and group 2 with tumor volume ≥ 0.5 cc. Inter-rater reliability for PS and MR lexicon was calculated. Results Forty-seven patients with 3DTPMB had at least one lesion with PS ≥ 3 on mpMRI. PS of 5 had high PPV and high specificity of 100% at the lesion and person levels. Sensitivity of a PS ≥ 3 was 68.27% for group 1 and was 48.39% for group 2. Specificity was 93.56% for group 1 and was 95.53% for group 2. At the person level, sensitivity of PS ≥ 3 was 81.25% for group 1 and was 82.35% for group 2. Specificity was 32.26% for group 1 and was 53.85% for group 2. Conclusion PI-RADS v2 category of 5 had high PPV and specificity; however, combined PS ≥ 3 had mixed performance in detection of csPCa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-parametric MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinically significant prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADS v2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lind, Kimberly E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garg, Kavita</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crawford, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werahera, Priya N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pokharel, Sajal S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">44(2018), 2 vom: 31. Aug., Seite 705-712</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:705-712</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-018-1751-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">08</subfield><subfield code="h">705-712</subfield></datafield></record></collection>
|
score |
7.401124 |