Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $)
Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0...
Ausführliche Beschreibung
Autor*in: |
Tribaudino, Mario [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Physics and chemistry of minerals - Berlin : Springer, 1977, 46(2019), 9 vom: 13. Juni, Seite 827-837 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2019 ; number:9 ; day:13 ; month:06 ; pages:827-837 |
Links: |
---|
DOI / URN: |
10.1007/s00269-019-01043-z |
---|
Katalog-ID: |
SPR003486303 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR003486303 | ||
003 | DE-627 | ||
005 | 20230519070804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00269-019-01043-z |2 doi | |
035 | |a (DE-627)SPR003486303 | ||
035 | |a (SPR)s00269-019-01043-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tribaudino, Mario |e verfasserin |0 (orcid)0000-0003-4941-2914 |4 aut | |
245 | 1 | 0 | |a Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. | ||
650 | 4 | |a Pyroxene |7 (dpeaa)DE-He213 | |
650 | 4 | |a Raman spectroscopy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Zn |7 (dpeaa)DE-He213 | |
650 | 4 | |a Peak position and crystal structure |7 (dpeaa)DE-He213 | |
700 | 1 | |a Stangarone, Claudia |4 aut | |
700 | 1 | |a Gori, Claudia |4 aut | |
700 | 1 | |a Mantovani, Luciana |4 aut | |
700 | 1 | |a Bersani, Danilo |4 aut | |
700 | 1 | |a Lottici, Pier Paolo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physics and chemistry of minerals |d Berlin : Springer, 1977 |g 46(2019), 9 vom: 13. Juni, Seite 827-837 |w (DE-627)254639038 |w (DE-600)1463021-7 |x 1432-2021 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2019 |g number:9 |g day:13 |g month:06 |g pages:827-837 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00269-019-01043-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 46 |j 2019 |e 9 |b 13 |c 06 |h 827-837 |
author_variant |
m t mt c s cs c g cg l m lm d b db p p l pp ppl |
---|---|
matchkey_str |
article:14322021:2019----::xeietlncluaermnpcriczprxnsnaoprsnewec_m1 |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00269-019-01043-z doi (DE-627)SPR003486303 (SPR)s00269-019-01043-z-e DE-627 ger DE-627 rakwb eng Tribaudino, Mario verfasserin (orcid)0000-0003-4941-2914 aut Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 Stangarone, Claudia aut Gori, Claudia aut Mantovani, Luciana aut Bersani, Danilo aut Lottici, Pier Paolo aut Enthalten in Physics and chemistry of minerals Berlin : Springer, 1977 46(2019), 9 vom: 13. Juni, Seite 827-837 (DE-627)254639038 (DE-600)1463021-7 1432-2021 nnns volume:46 year:2019 number:9 day:13 month:06 pages:827-837 https://dx.doi.org/10.1007/s00269-019-01043-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2019 9 13 06 827-837 |
spelling |
10.1007/s00269-019-01043-z doi (DE-627)SPR003486303 (SPR)s00269-019-01043-z-e DE-627 ger DE-627 rakwb eng Tribaudino, Mario verfasserin (orcid)0000-0003-4941-2914 aut Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 Stangarone, Claudia aut Gori, Claudia aut Mantovani, Luciana aut Bersani, Danilo aut Lottici, Pier Paolo aut Enthalten in Physics and chemistry of minerals Berlin : Springer, 1977 46(2019), 9 vom: 13. Juni, Seite 827-837 (DE-627)254639038 (DE-600)1463021-7 1432-2021 nnns volume:46 year:2019 number:9 day:13 month:06 pages:827-837 https://dx.doi.org/10.1007/s00269-019-01043-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2019 9 13 06 827-837 |
allfields_unstemmed |
10.1007/s00269-019-01043-z doi (DE-627)SPR003486303 (SPR)s00269-019-01043-z-e DE-627 ger DE-627 rakwb eng Tribaudino, Mario verfasserin (orcid)0000-0003-4941-2914 aut Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 Stangarone, Claudia aut Gori, Claudia aut Mantovani, Luciana aut Bersani, Danilo aut Lottici, Pier Paolo aut Enthalten in Physics and chemistry of minerals Berlin : Springer, 1977 46(2019), 9 vom: 13. Juni, Seite 827-837 (DE-627)254639038 (DE-600)1463021-7 1432-2021 nnns volume:46 year:2019 number:9 day:13 month:06 pages:827-837 https://dx.doi.org/10.1007/s00269-019-01043-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2019 9 13 06 827-837 |
allfieldsGer |
10.1007/s00269-019-01043-z doi (DE-627)SPR003486303 (SPR)s00269-019-01043-z-e DE-627 ger DE-627 rakwb eng Tribaudino, Mario verfasserin (orcid)0000-0003-4941-2914 aut Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 Stangarone, Claudia aut Gori, Claudia aut Mantovani, Luciana aut Bersani, Danilo aut Lottici, Pier Paolo aut Enthalten in Physics and chemistry of minerals Berlin : Springer, 1977 46(2019), 9 vom: 13. Juni, Seite 827-837 (DE-627)254639038 (DE-600)1463021-7 1432-2021 nnns volume:46 year:2019 number:9 day:13 month:06 pages:827-837 https://dx.doi.org/10.1007/s00269-019-01043-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2019 9 13 06 827-837 |
allfieldsSound |
10.1007/s00269-019-01043-z doi (DE-627)SPR003486303 (SPR)s00269-019-01043-z-e DE-627 ger DE-627 rakwb eng Tribaudino, Mario verfasserin (orcid)0000-0003-4941-2914 aut Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 Stangarone, Claudia aut Gori, Claudia aut Mantovani, Luciana aut Bersani, Danilo aut Lottici, Pier Paolo aut Enthalten in Physics and chemistry of minerals Berlin : Springer, 1977 46(2019), 9 vom: 13. Juni, Seite 827-837 (DE-627)254639038 (DE-600)1463021-7 1432-2021 nnns volume:46 year:2019 number:9 day:13 month:06 pages:827-837 https://dx.doi.org/10.1007/s00269-019-01043-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2019 9 13 06 827-837 |
language |
English |
source |
Enthalten in Physics and chemistry of minerals 46(2019), 9 vom: 13. Juni, Seite 827-837 volume:46 year:2019 number:9 day:13 month:06 pages:827-837 |
sourceStr |
Enthalten in Physics and chemistry of minerals 46(2019), 9 vom: 13. Juni, Seite 827-837 volume:46 year:2019 number:9 day:13 month:06 pages:827-837 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pyroxene Raman spectroscopy Zn Peak position and crystal structure |
isfreeaccess_bool |
false |
container_title |
Physics and chemistry of minerals |
authorswithroles_txt_mv |
Tribaudino, Mario @@aut@@ Stangarone, Claudia @@aut@@ Gori, Claudia @@aut@@ Mantovani, Luciana @@aut@@ Bersani, Danilo @@aut@@ Lottici, Pier Paolo @@aut@@ |
publishDateDaySort_date |
2019-06-13T00:00:00Z |
hierarchy_top_id |
254639038 |
id |
SPR003486303 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003486303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519070804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00269-019-01043-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003486303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00269-019-01043-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tribaudino, Mario</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4941-2914</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyroxene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman spectroscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak position and crystal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stangarone, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gori, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mantovani, Luciana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bersani, Danilo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lottici, Pier Paolo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics and chemistry of minerals</subfield><subfield code="d">Berlin : Springer, 1977</subfield><subfield code="g">46(2019), 9 vom: 13. Juni, Seite 827-837</subfield><subfield code="w">(DE-627)254639038</subfield><subfield code="w">(DE-600)1463021-7</subfield><subfield code="x">1432-2021</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:9</subfield><subfield code="g">day:13</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:827-837</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00269-019-01043-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2019</subfield><subfield code="e">9</subfield><subfield code="b">13</subfield><subfield code="c">06</subfield><subfield code="h">827-837</subfield></datafield></record></collection>
|
author |
Tribaudino, Mario |
spellingShingle |
Tribaudino, Mario misc Pyroxene misc Raman spectroscopy misc Zn misc Peak position and crystal structure Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
authorStr |
Tribaudino, Mario |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254639038 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-2021 |
topic_title |
Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) Pyroxene (dpeaa)DE-He213 Raman spectroscopy (dpeaa)DE-He213 Zn (dpeaa)DE-He213 Peak position and crystal structure (dpeaa)DE-He213 |
topic |
misc Pyroxene misc Raman spectroscopy misc Zn misc Peak position and crystal structure |
topic_unstemmed |
misc Pyroxene misc Raman spectroscopy misc Zn misc Peak position and crystal structure |
topic_browse |
misc Pyroxene misc Raman spectroscopy misc Zn misc Peak position and crystal structure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physics and chemistry of minerals |
hierarchy_parent_id |
254639038 |
hierarchy_top_title |
Physics and chemistry of minerals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254639038 (DE-600)1463021-7 |
title |
Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
ctrlnum |
(DE-627)SPR003486303 (SPR)s00269-019-01043-z-e |
title_full |
Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
author_sort |
Tribaudino, Mario |
journal |
Physics and chemistry of minerals |
journalStr |
Physics and chemistry of minerals |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
827 |
author_browse |
Tribaudino, Mario Stangarone, Claudia Gori, Claudia Mantovani, Luciana Bersani, Danilo Lottici, Pier Paolo |
container_volume |
46 |
format_se |
Elektronische Aufsätze |
author-letter |
Tribaudino, Mario |
doi_str_mv |
10.1007/s00269-019-01043-z |
normlink |
(ORCID)0000-0003-4941-2914 |
normlink_prefix_str_mv |
(orcid)0000-0003-4941-2914 |
title_sort |
experimental and calculated raman spectra in ca–zn pyroxenes and a comparison between ($ ca_{x} %$ m^{2+} $1−x)$ m^{2+} %$ si_{2} %$ o_{6} $ pyroxenes ($ m^{2+} $ = mg, co, zn, $ fe^{2+} $) |
title_auth |
Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
abstract |
Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $) |
url |
https://dx.doi.org/10.1007/s00269-019-01043-z |
remote_bool |
true |
author2 |
Stangarone, Claudia Gori, Claudia Mantovani, Luciana Bersani, Danilo Lottici, Pier Paolo |
author2Str |
Stangarone, Claudia Gori, Claudia Mantovani, Luciana Bersani, Danilo Lottici, Pier Paolo |
ppnlink |
254639038 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00269-019-01043-z |
up_date |
2024-07-03T19:45:05.291Z |
_version_ |
1803588369431658496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003486303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519070804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00269-019-01043-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003486303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00269-019-01043-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tribaudino, Mario</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4941-2914</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes ($ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Raman spectra of the end member pyroxenes $ CaZnSi_{2} %$ O_{6} $ and $ Zn_{2} %$ Si_{2} %$ O_{6} $ are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic ($ Ca_{x} %$ Zn_{1−x} $)$ ZnSi_{2} %$ O_{6} $ pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in ($ Ca_{x} %$ M^{2+} $1−x)$ M^{2+} %$ Si_{2} %$ O_{6} $ pyroxenes, with $ M^{2+} $ = Mg, Co, Zn, $ Fe^{2+} $. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the $ CaZnSi_{2} %$ O_{6} $ end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 $ cm^{−1} $ peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and $ Fe^{2+} $ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyroxene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman spectroscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak position and crystal structure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stangarone, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gori, Claudia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mantovani, Luciana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bersani, Danilo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lottici, Pier Paolo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics and chemistry of minerals</subfield><subfield code="d">Berlin : Springer, 1977</subfield><subfield code="g">46(2019), 9 vom: 13. Juni, Seite 827-837</subfield><subfield code="w">(DE-627)254639038</subfield><subfield code="w">(DE-600)1463021-7</subfield><subfield code="x">1432-2021</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:9</subfield><subfield code="g">day:13</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:827-837</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00269-019-01043-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2019</subfield><subfield code="e">9</subfield><subfield code="b">13</subfield><subfield code="c">06</subfield><subfield code="h">827-837</subfield></datafield></record></collection>
|
score |
7.3993187 |