The AM-GM Inequality is Equivalent to the Bernoulli Inequality
Autor*in: |
Maligranda, Lech [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: The Mathematical Intelligencer - Springer US, 1977, 34(2012), 1 vom: 01. Feb., Seite 1-2 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2012 ; number:1 ; day:01 ; month:02 ; pages:1-2 |
Links: |
---|
DOI / URN: |
10.1007/s00283-011-9266-8 |
---|
Katalog-ID: |
SPR00365270X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR00365270X | ||
003 | DE-627 | ||
005 | 20230328152646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00283-011-9266-8 |2 doi | |
035 | |a (DE-627)SPR00365270X | ||
035 | |a (SPR)s00283-011-9266-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Maligranda, Lech |e verfasserin |4 aut | |
245 | 1 | 4 | |a The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2012 | ||
650 | 4 | |a Mathematical Method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Univer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simple Proof |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mathematical Intelligencer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simple Argument |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t The Mathematical Intelligencer |d Springer US, 1977 |g 34(2012), 1 vom: 01. Feb., Seite 1-2 |w (DE-627)SPR003632180 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2012 |g number:1 |g day:01 |g month:02 |g pages:1-2 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00283-011-9266-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 34 |j 2012 |e 1 |b 01 |c 02 |h 1-2 |
author_variant |
l m lm |
---|---|
matchkey_str |
maligrandalech:2012----:hagieultieuvlntteen |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00283-011-9266-8 doi (DE-627)SPR00365270X (SPR)s00283-011-9266-8-e DE-627 ger DE-627 rakwb eng Maligranda, Lech verfasserin aut The AM-GM Inequality is Equivalent to the Bernoulli Inequality 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2012 Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 Enthalten in The Mathematical Intelligencer Springer US, 1977 34(2012), 1 vom: 01. Feb., Seite 1-2 (DE-627)SPR003632180 nnns volume:34 year:2012 number:1 day:01 month:02 pages:1-2 https://dx.doi.org/10.1007/s00283-011-9266-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 34 2012 1 01 02 1-2 |
spelling |
10.1007/s00283-011-9266-8 doi (DE-627)SPR00365270X (SPR)s00283-011-9266-8-e DE-627 ger DE-627 rakwb eng Maligranda, Lech verfasserin aut The AM-GM Inequality is Equivalent to the Bernoulli Inequality 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2012 Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 Enthalten in The Mathematical Intelligencer Springer US, 1977 34(2012), 1 vom: 01. Feb., Seite 1-2 (DE-627)SPR003632180 nnns volume:34 year:2012 number:1 day:01 month:02 pages:1-2 https://dx.doi.org/10.1007/s00283-011-9266-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 34 2012 1 01 02 1-2 |
allfields_unstemmed |
10.1007/s00283-011-9266-8 doi (DE-627)SPR00365270X (SPR)s00283-011-9266-8-e DE-627 ger DE-627 rakwb eng Maligranda, Lech verfasserin aut The AM-GM Inequality is Equivalent to the Bernoulli Inequality 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2012 Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 Enthalten in The Mathematical Intelligencer Springer US, 1977 34(2012), 1 vom: 01. Feb., Seite 1-2 (DE-627)SPR003632180 nnns volume:34 year:2012 number:1 day:01 month:02 pages:1-2 https://dx.doi.org/10.1007/s00283-011-9266-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 34 2012 1 01 02 1-2 |
allfieldsGer |
10.1007/s00283-011-9266-8 doi (DE-627)SPR00365270X (SPR)s00283-011-9266-8-e DE-627 ger DE-627 rakwb eng Maligranda, Lech verfasserin aut The AM-GM Inequality is Equivalent to the Bernoulli Inequality 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2012 Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 Enthalten in The Mathematical Intelligencer Springer US, 1977 34(2012), 1 vom: 01. Feb., Seite 1-2 (DE-627)SPR003632180 nnns volume:34 year:2012 number:1 day:01 month:02 pages:1-2 https://dx.doi.org/10.1007/s00283-011-9266-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 34 2012 1 01 02 1-2 |
allfieldsSound |
10.1007/s00283-011-9266-8 doi (DE-627)SPR00365270X (SPR)s00283-011-9266-8-e DE-627 ger DE-627 rakwb eng Maligranda, Lech verfasserin aut The AM-GM Inequality is Equivalent to the Bernoulli Inequality 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC 2012 Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 Enthalten in The Mathematical Intelligencer Springer US, 1977 34(2012), 1 vom: 01. Feb., Seite 1-2 (DE-627)SPR003632180 nnns volume:34 year:2012 number:1 day:01 month:02 pages:1-2 https://dx.doi.org/10.1007/s00283-011-9266-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 34 2012 1 01 02 1-2 |
language |
English |
source |
Enthalten in The Mathematical Intelligencer 34(2012), 1 vom: 01. Feb., Seite 1-2 volume:34 year:2012 number:1 day:01 month:02 pages:1-2 |
sourceStr |
Enthalten in The Mathematical Intelligencer 34(2012), 1 vom: 01. Feb., Seite 1-2 volume:34 year:2012 number:1 day:01 month:02 pages:1-2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mathematical Method Univer Simple Proof Mathematical Intelligencer Simple Argument |
isfreeaccess_bool |
false |
container_title |
The Mathematical Intelligencer |
authorswithroles_txt_mv |
Maligranda, Lech @@aut@@ |
publishDateDaySort_date |
2012-02-01T00:00:00Z |
hierarchy_top_id |
SPR003632180 |
id |
SPR00365270X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00365270X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328152646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00283-011-9266-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00365270X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00283-011-9266-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maligranda, Lech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The AM-GM Inequality is Equivalent to the Bernoulli Inequality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Univer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Proof</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Intelligencer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Argument</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Mathematical Intelligencer</subfield><subfield code="d">Springer US, 1977</subfield><subfield code="g">34(2012), 1 vom: 01. Feb., Seite 1-2</subfield><subfield code="w">(DE-627)SPR003632180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00283-011-9266-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">1-2</subfield></datafield></record></collection>
|
author |
Maligranda, Lech |
spellingShingle |
Maligranda, Lech misc Mathematical Method misc Univer misc Simple Proof misc Mathematical Intelligencer misc Simple Argument The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
authorStr |
Maligranda, Lech |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR003632180 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
The AM-GM Inequality is Equivalent to the Bernoulli Inequality Mathematical Method (dpeaa)DE-He213 Univer (dpeaa)DE-He213 Simple Proof (dpeaa)DE-He213 Mathematical Intelligencer (dpeaa)DE-He213 Simple Argument (dpeaa)DE-He213 |
topic |
misc Mathematical Method misc Univer misc Simple Proof misc Mathematical Intelligencer misc Simple Argument |
topic_unstemmed |
misc Mathematical Method misc Univer misc Simple Proof misc Mathematical Intelligencer misc Simple Argument |
topic_browse |
misc Mathematical Method misc Univer misc Simple Proof misc Mathematical Intelligencer misc Simple Argument |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Mathematical Intelligencer |
hierarchy_parent_id |
SPR003632180 |
hierarchy_top_title |
The Mathematical Intelligencer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR003632180 |
title |
The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
ctrlnum |
(DE-627)SPR00365270X (SPR)s00283-011-9266-8-e |
title_full |
The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
author_sort |
Maligranda, Lech |
journal |
The Mathematical Intelligencer |
journalStr |
The Mathematical Intelligencer |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Maligranda, Lech |
container_volume |
34 |
format_se |
Elektronische Aufsätze |
author-letter |
Maligranda, Lech |
doi_str_mv |
10.1007/s00283-011-9266-8 |
title_sort |
am-gm inequality is equivalent to the bernoulli inequality |
title_auth |
The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
abstract |
© Springer Science+Business Media, LLC 2012 |
abstractGer |
© Springer Science+Business Media, LLC 2012 |
abstract_unstemmed |
© Springer Science+Business Media, LLC 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
1 |
title_short |
The AM-GM Inequality is Equivalent to the Bernoulli Inequality |
url |
https://dx.doi.org/10.1007/s00283-011-9266-8 |
remote_bool |
true |
ppnlink |
SPR003632180 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00283-011-9266-8 |
up_date |
2024-07-03T20:49:22.271Z |
_version_ |
1803592413766221824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00365270X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328152646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00283-011-9266-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00365270X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00283-011-9266-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maligranda, Lech</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The AM-GM Inequality is Equivalent to the Bernoulli Inequality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Univer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Proof</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Intelligencer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Argument</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Mathematical Intelligencer</subfield><subfield code="d">Springer US, 1977</subfield><subfield code="g">34(2012), 1 vom: 01. Feb., Seite 1-2</subfield><subfield code="w">(DE-627)SPR003632180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00283-011-9266-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">1-2</subfield></datafield></record></collection>
|
score |
7.4027443 |