Do calcium buffers always slow down the propagation of calcium waves?
Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiolog...
Ausführliche Beschreibung
Autor*in: |
Tsai, Je-Chiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical biology - Berlin : Springer, 1974, 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2012 ; number:6-7 ; day:18 ; month:10 ; pages:1587-1632 |
Links: |
---|
DOI / URN: |
10.1007/s00285-012-0605-y |
---|
Katalog-ID: |
SPR003701565 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR003701565 | ||
003 | DE-627 | ||
005 | 20230519195234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00285-012-0605-y |2 doi | |
035 | |a (DE-627)SPR003701565 | ||
035 | |a (SPR)s00285-012-0605-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tsai, Je-Chiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Do calcium buffers always slow down the propagation of calcium waves? |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2012 | ||
520 | |a Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. | ||
650 | 4 | |a Calcium |7 (dpeaa)DE-He213 | |
650 | 4 | |a Buffer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Traveling wave |7 (dpeaa)DE-He213 | |
650 | 4 | |a Buffered FitzHugh–Nagumo model |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical biology |d Berlin : Springer, 1974 |g 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 |w (DE-627)242065082 |w (DE-600)1421292-4 |x 1432-1416 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2012 |g number:6-7 |g day:18 |g month:10 |g pages:1587-1632 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00285-012-0605-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 67 |j 2012 |e 6-7 |b 18 |c 10 |h 1587-1632 |
author_variant |
j c t jct |
---|---|
matchkey_str |
article:14321416:2012----::oacubfeslaslwonhpoaai |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00285-012-0605-y doi (DE-627)SPR003701565 (SPR)s00285-012-0605-y-e DE-627 ger DE-627 rakwb eng Tsai, Je-Chiang verfasserin aut Do calcium buffers always slow down the propagation of calcium waves? 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 Enthalten in Journal of mathematical biology Berlin : Springer, 1974 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 (DE-627)242065082 (DE-600)1421292-4 1432-1416 nnns volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 https://dx.doi.org/10.1007/s00285-012-0605-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2012 6-7 18 10 1587-1632 |
spelling |
10.1007/s00285-012-0605-y doi (DE-627)SPR003701565 (SPR)s00285-012-0605-y-e DE-627 ger DE-627 rakwb eng Tsai, Je-Chiang verfasserin aut Do calcium buffers always slow down the propagation of calcium waves? 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 Enthalten in Journal of mathematical biology Berlin : Springer, 1974 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 (DE-627)242065082 (DE-600)1421292-4 1432-1416 nnns volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 https://dx.doi.org/10.1007/s00285-012-0605-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2012 6-7 18 10 1587-1632 |
allfields_unstemmed |
10.1007/s00285-012-0605-y doi (DE-627)SPR003701565 (SPR)s00285-012-0605-y-e DE-627 ger DE-627 rakwb eng Tsai, Je-Chiang verfasserin aut Do calcium buffers always slow down the propagation of calcium waves? 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 Enthalten in Journal of mathematical biology Berlin : Springer, 1974 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 (DE-627)242065082 (DE-600)1421292-4 1432-1416 nnns volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 https://dx.doi.org/10.1007/s00285-012-0605-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2012 6-7 18 10 1587-1632 |
allfieldsGer |
10.1007/s00285-012-0605-y doi (DE-627)SPR003701565 (SPR)s00285-012-0605-y-e DE-627 ger DE-627 rakwb eng Tsai, Je-Chiang verfasserin aut Do calcium buffers always slow down the propagation of calcium waves? 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 Enthalten in Journal of mathematical biology Berlin : Springer, 1974 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 (DE-627)242065082 (DE-600)1421292-4 1432-1416 nnns volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 https://dx.doi.org/10.1007/s00285-012-0605-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2012 6-7 18 10 1587-1632 |
allfieldsSound |
10.1007/s00285-012-0605-y doi (DE-627)SPR003701565 (SPR)s00285-012-0605-y-e DE-627 ger DE-627 rakwb eng Tsai, Je-Chiang verfasserin aut Do calcium buffers always slow down the propagation of calcium waves? 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2012 Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 Enthalten in Journal of mathematical biology Berlin : Springer, 1974 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 (DE-627)242065082 (DE-600)1421292-4 1432-1416 nnns volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 https://dx.doi.org/10.1007/s00285-012-0605-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2012 6-7 18 10 1587-1632 |
language |
English |
source |
Enthalten in Journal of mathematical biology 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 |
sourceStr |
Enthalten in Journal of mathematical biology 67(2012), 6-7 vom: 18. Okt., Seite 1587-1632 volume:67 year:2012 number:6-7 day:18 month:10 pages:1587-1632 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Calcium Buffer Traveling wave Buffered FitzHugh–Nagumo model |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical biology |
authorswithroles_txt_mv |
Tsai, Je-Chiang @@aut@@ |
publishDateDaySort_date |
2012-10-18T00:00:00Z |
hierarchy_top_id |
242065082 |
id |
SPR003701565 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003701565</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519195234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00285-012-0605-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003701565</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00285-012-0605-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsai, Je-Chiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do calcium buffers always slow down the propagation of calcium waves?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling wave</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffered FitzHugh–Nagumo model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical biology</subfield><subfield code="d">Berlin : Springer, 1974</subfield><subfield code="g">67(2012), 6-7 vom: 18. Okt., Seite 1587-1632</subfield><subfield code="w">(DE-627)242065082</subfield><subfield code="w">(DE-600)1421292-4</subfield><subfield code="x">1432-1416</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6-7</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1587-1632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00285-012-0605-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2012</subfield><subfield code="e">6-7</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">1587-1632</subfield></datafield></record></collection>
|
author |
Tsai, Je-Chiang |
spellingShingle |
Tsai, Je-Chiang misc Calcium misc Buffer misc Traveling wave misc Buffered FitzHugh–Nagumo model Do calcium buffers always slow down the propagation of calcium waves? |
authorStr |
Tsai, Je-Chiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)242065082 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1416 |
topic_title |
Do calcium buffers always slow down the propagation of calcium waves? Calcium (dpeaa)DE-He213 Buffer (dpeaa)DE-He213 Traveling wave (dpeaa)DE-He213 Buffered FitzHugh–Nagumo model (dpeaa)DE-He213 |
topic |
misc Calcium misc Buffer misc Traveling wave misc Buffered FitzHugh–Nagumo model |
topic_unstemmed |
misc Calcium misc Buffer misc Traveling wave misc Buffered FitzHugh–Nagumo model |
topic_browse |
misc Calcium misc Buffer misc Traveling wave misc Buffered FitzHugh–Nagumo model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of mathematical biology |
hierarchy_parent_id |
242065082 |
hierarchy_top_title |
Journal of mathematical biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)242065082 (DE-600)1421292-4 |
title |
Do calcium buffers always slow down the propagation of calcium waves? |
ctrlnum |
(DE-627)SPR003701565 (SPR)s00285-012-0605-y-e |
title_full |
Do calcium buffers always slow down the propagation of calcium waves? |
author_sort |
Tsai, Je-Chiang |
journal |
Journal of mathematical biology |
journalStr |
Journal of mathematical biology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1587 |
author_browse |
Tsai, Je-Chiang |
container_volume |
67 |
format_se |
Elektronische Aufsätze |
author-letter |
Tsai, Je-Chiang |
doi_str_mv |
10.1007/s00285-012-0605-y |
title_sort |
do calcium buffers always slow down the propagation of calcium waves? |
title_auth |
Do calcium buffers always slow down the propagation of calcium waves? |
abstract |
Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. © Springer-Verlag Berlin Heidelberg 2012 |
abstractGer |
Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. © Springer-Verlag Berlin Heidelberg 2012 |
abstract_unstemmed |
Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. © Springer-Verlag Berlin Heidelberg 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6-7 |
title_short |
Do calcium buffers always slow down the propagation of calcium waves? |
url |
https://dx.doi.org/10.1007/s00285-012-0605-y |
remote_bool |
true |
ppnlink |
242065082 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00285-012-0605-y |
up_date |
2024-07-03T21:07:39.447Z |
_version_ |
1803593564240740352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR003701565</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519195234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00285-012-0605-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR003701565</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00285-012-0605-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsai, Je-Chiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do calcium buffers always slow down the propagation of calcium waves?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh–Nagumo model, to get the buffered FitzHugh–Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (%$K=K(a)%$) characterized by system excitability parameter %$a%$ such that calcium buffers can be classified into two types: weak buffers (%$K\in (K(a),\infty )%$) and strong buffers (%$K\in (0,K(a))%$). We analytically show that the addition of weak buffers or strong buffers but with its total concentration %$b_0^1%$ below some critical total concentration %$b_{0,c}^1%$ into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to %$\sqrt{D_1}%$ as %$D_1\rightarrow \infty %$. In contrast, the addition of strong buffers with the total concentration %$b_0^1>b_{0,c}^1%$ into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity %$D_1%$ of the added buffers is sufficiently large.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling wave</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buffered FitzHugh–Nagumo model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical biology</subfield><subfield code="d">Berlin : Springer, 1974</subfield><subfield code="g">67(2012), 6-7 vom: 18. Okt., Seite 1587-1632</subfield><subfield code="w">(DE-627)242065082</subfield><subfield code="w">(DE-600)1421292-4</subfield><subfield code="x">1432-1416</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6-7</subfield><subfield code="g">day:18</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1587-1632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00285-012-0605-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2012</subfield><subfield code="e">6-7</subfield><subfield code="b">18</subfield><subfield code="c">10</subfield><subfield code="h">1587-1632</subfield></datafield></record></collection>
|
score |
7.399935 |