A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered...
Ausführliche Beschreibung
Autor*in: |
Pappalardo, Carmine Maria [verfasserIn] Guida, Domenico [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Reference Point Coordinate Formulation (RPCF) |
---|
Übergeordnetes Werk: |
Enthalten in: Archive of applied mechanics - Berlin : Springer, 1929, 88(2018), 12 vom: 06. Aug., Seite 2153-2177 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2018 ; number:12 ; day:06 ; month:08 ; pages:2153-2177 |
Links: |
---|
DOI / URN: |
10.1007/s00419-018-1441-3 |
---|
Katalog-ID: |
SPR005480442 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR005480442 | ||
003 | DE-627 | ||
005 | 20220110182515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201001s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00419-018-1441-3 |2 doi | |
035 | |a (DE-627)SPR005480442 | ||
035 | |a (SPR)s00419-018-1441-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q ASE |
084 | |a 50.31 |2 bkl | ||
084 | |a 50.32 |2 bkl | ||
084 | |a 50.33 |2 bkl | ||
100 | 1 | |a Pappalardo, Carmine Maria |e verfasserin |4 aut | |
245 | 1 | 2 | |a A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. | ||
650 | 4 | |a Multibody Systems (MBS) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reference Point Coordinate Formulation (RPCF) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Natural Absolute Coordinate Formulation (NACF) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Augmented Formulation (AF) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Embedding Technique (ET) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amalgamated Formulation (AMF) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Projection Method (PM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Udwadia–Kalaba Equations (UKE) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Guida, Domenico |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archive of applied mechanics |d Berlin : Springer, 1929 |g 88(2018), 12 vom: 06. Aug., Seite 2153-2177 |w (DE-627)27012618X |w (DE-600)1476349-7 |x 1432-0681 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2018 |g number:12 |g day:06 |g month:08 |g pages:2153-2177 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00419-018-1441-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.31 |q ASE |
936 | b | k | |a 50.32 |q ASE |
936 | b | k | |a 50.33 |q ASE |
951 | |a AR | ||
952 | |d 88 |j 2018 |e 12 |b 06 |c 08 |h 2153-2177 |
author_variant |
c m p cm cmp d g dg |
---|---|
matchkey_str |
article:14320681:2018----::cmaaietdoterniamtosotenltclomltoadhnmrclouinfheut |
hierarchy_sort_str |
2018 |
bklnumber |
50.31 50.32 50.33 |
publishDate |
2018 |
allfields |
10.1007/s00419-018-1441-3 doi (DE-627)SPR005480442 (SPR)s00419-018-1441-3-e DE-627 ger DE-627 rakwb eng 690 ASE 50.31 bkl 50.32 bkl 50.33 bkl Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 Guida, Domenico verfasserin aut Enthalten in Archive of applied mechanics Berlin : Springer, 1929 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)27012618X (DE-600)1476349-7 1432-0681 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://dx.doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 ASE 50.32 ASE 50.33 ASE AR 88 2018 12 06 08 2153-2177 |
spelling |
10.1007/s00419-018-1441-3 doi (DE-627)SPR005480442 (SPR)s00419-018-1441-3-e DE-627 ger DE-627 rakwb eng 690 ASE 50.31 bkl 50.32 bkl 50.33 bkl Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 Guida, Domenico verfasserin aut Enthalten in Archive of applied mechanics Berlin : Springer, 1929 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)27012618X (DE-600)1476349-7 1432-0681 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://dx.doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 ASE 50.32 ASE 50.33 ASE AR 88 2018 12 06 08 2153-2177 |
allfields_unstemmed |
10.1007/s00419-018-1441-3 doi (DE-627)SPR005480442 (SPR)s00419-018-1441-3-e DE-627 ger DE-627 rakwb eng 690 ASE 50.31 bkl 50.32 bkl 50.33 bkl Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 Guida, Domenico verfasserin aut Enthalten in Archive of applied mechanics Berlin : Springer, 1929 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)27012618X (DE-600)1476349-7 1432-0681 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://dx.doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 ASE 50.32 ASE 50.33 ASE AR 88 2018 12 06 08 2153-2177 |
allfieldsGer |
10.1007/s00419-018-1441-3 doi (DE-627)SPR005480442 (SPR)s00419-018-1441-3-e DE-627 ger DE-627 rakwb eng 690 ASE 50.31 bkl 50.32 bkl 50.33 bkl Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 Guida, Domenico verfasserin aut Enthalten in Archive of applied mechanics Berlin : Springer, 1929 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)27012618X (DE-600)1476349-7 1432-0681 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://dx.doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 ASE 50.32 ASE 50.33 ASE AR 88 2018 12 06 08 2153-2177 |
allfieldsSound |
10.1007/s00419-018-1441-3 doi (DE-627)SPR005480442 (SPR)s00419-018-1441-3-e DE-627 ger DE-627 rakwb eng 690 ASE 50.31 bkl 50.32 bkl 50.33 bkl Pappalardo, Carmine Maria verfasserin aut A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 Guida, Domenico verfasserin aut Enthalten in Archive of applied mechanics Berlin : Springer, 1929 88(2018), 12 vom: 06. Aug., Seite 2153-2177 (DE-627)27012618X (DE-600)1476349-7 1432-0681 nnns volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 https://dx.doi.org/10.1007/s00419-018-1441-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 ASE 50.32 ASE 50.33 ASE AR 88 2018 12 06 08 2153-2177 |
language |
English |
source |
Enthalten in Archive of applied mechanics 88(2018), 12 vom: 06. Aug., Seite 2153-2177 volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 |
sourceStr |
Enthalten in Archive of applied mechanics 88(2018), 12 vom: 06. Aug., Seite 2153-2177 volume:88 year:2018 number:12 day:06 month:08 pages:2153-2177 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multibody Systems (MBS) Reference Point Coordinate Formulation (RPCF) Natural Absolute Coordinate Formulation (NACF) Augmented Formulation (AF) Embedding Technique (ET) Amalgamated Formulation (AMF) Projection Method (PM) Udwadia–Kalaba Equations (UKE) |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Archive of applied mechanics |
authorswithroles_txt_mv |
Pappalardo, Carmine Maria @@aut@@ Guida, Domenico @@aut@@ |
publishDateDaySort_date |
2018-08-06T00:00:00Z |
hierarchy_top_id |
27012618X |
dewey-sort |
3690 |
id |
SPR005480442 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR005480442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110182515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1441-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR005480442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00419-018-1441-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multibody Systems (MBS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reference Point Coordinate Formulation (RPCF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Absolute Coordinate Formulation (NACF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Augmented Formulation (AF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding Technique (ET)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amalgamated Formulation (AMF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projection Method (PM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba Equations (UKE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Berlin : Springer, 1929</subfield><subfield code="g">88(2018), 12 vom: 06. Aug., Seite 2153-2177</subfield><subfield code="w">(DE-627)27012618X</subfield><subfield code="w">(DE-600)1476349-7</subfield><subfield code="x">1432-0681</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2153-2177</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00419-018-1441-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2153-2177</subfield></datafield></record></collection>
|
author |
Pappalardo, Carmine Maria |
spellingShingle |
Pappalardo, Carmine Maria ddc 690 bkl 50.31 bkl 50.32 bkl 50.33 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
authorStr |
Pappalardo, Carmine Maria |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)27012618X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-0681 |
topic_title |
690 ASE 50.31 bkl 50.32 bkl 50.33 bkl A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems Multibody Systems (MBS) (dpeaa)DE-He213 Reference Point Coordinate Formulation (RPCF) (dpeaa)DE-He213 Natural Absolute Coordinate Formulation (NACF) (dpeaa)DE-He213 Augmented Formulation (AF) (dpeaa)DE-He213 Embedding Technique (ET) (dpeaa)DE-He213 Amalgamated Formulation (AMF) (dpeaa)DE-He213 Projection Method (PM) (dpeaa)DE-He213 Udwadia–Kalaba Equations (UKE) (dpeaa)DE-He213 |
topic |
ddc 690 bkl 50.31 bkl 50.32 bkl 50.33 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 50.32 bkl 50.33 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
topic_browse |
ddc 690 bkl 50.31 bkl 50.32 bkl 50.33 misc Multibody Systems (MBS) misc Reference Point Coordinate Formulation (RPCF) misc Natural Absolute Coordinate Formulation (NACF) misc Augmented Formulation (AF) misc Embedding Technique (ET) misc Amalgamated Formulation (AMF) misc Projection Method (PM) misc Udwadia–Kalaba Equations (UKE) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Archive of applied mechanics |
hierarchy_parent_id |
27012618X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Archive of applied mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)27012618X (DE-600)1476349-7 |
title |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
ctrlnum |
(DE-627)SPR005480442 (SPR)s00419-018-1441-3-e |
title_full |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
author_sort |
Pappalardo, Carmine Maria |
journal |
Archive of applied mechanics |
journalStr |
Archive of applied mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
2153 |
author_browse |
Pappalardo, Carmine Maria Guida, Domenico |
container_volume |
88 |
class |
690 ASE 50.31 bkl 50.32 bkl 50.33 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pappalardo, Carmine Maria |
doi_str_mv |
10.1007/s00419-018-1441-3 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
title_auth |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
abstract |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. |
abstractGer |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. |
abstract_unstemmed |
Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems |
url |
https://dx.doi.org/10.1007/s00419-018-1441-3 |
remote_bool |
true |
author2 |
Guida, Domenico |
author2Str |
Guida, Domenico |
ppnlink |
27012618X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00419-018-1441-3 |
up_date |
2024-07-03T16:37:23.477Z |
_version_ |
1803576560564830208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR005480442</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110182515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201001s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00419-018-1441-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR005480442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00419-018-1441-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pappalardo, Carmine Maria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multibody Systems (MBS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reference Point Coordinate Formulation (RPCF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Absolute Coordinate Formulation (NACF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Augmented Formulation (AF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding Technique (ET)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amalgamated Formulation (AMF)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projection Method (PM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Udwadia–Kalaba Equations (UKE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guida, Domenico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archive of applied mechanics</subfield><subfield code="d">Berlin : Springer, 1929</subfield><subfield code="g">88(2018), 12 vom: 06. Aug., Seite 2153-2177</subfield><subfield code="w">(DE-627)27012618X</subfield><subfield code="w">(DE-600)1476349-7</subfield><subfield code="x">1432-0681</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2153-2177</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00419-018-1441-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2153-2177</subfield></datafield></record></collection>
|
score |
7.399967 |