Compositions of invariant fuzzy implications
Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we ob...
Ausführliche Beschreibung
Autor*in: |
Drewniak, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 10(2005), 6 vom: 28. Juni, Seite 514-520 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2005 ; number:6 ; day:28 ; month:06 ; pages:514-520 |
Links: |
---|
DOI / URN: |
10.1007/s00500-005-0527-3 |
---|
Katalog-ID: |
SPR006472583 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006472583 | ||
003 | DE-627 | ||
005 | 20230509102013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2005 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-005-0527-3 |2 doi | |
035 | |a (DE-627)SPR006472583 | ||
035 | |a (SPR)s00500-005-0527-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Drewniak, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compositions of invariant fuzzy implications |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2005 | ||
520 | |a Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. | ||
650 | 4 | |a Fuzzy implication |7 (dpeaa)DE-He213 | |
650 | 4 | |a Invariant implication |7 (dpeaa)DE-He213 | |
650 | 4 | |a Composition table |7 (dpeaa)DE-He213 | |
650 | 4 | |a Idempotent implication |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sobera, J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 10(2005), 6 vom: 28. Juni, Seite 514-520 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2005 |g number:6 |g day:28 |g month:06 |g pages:514-520 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-005-0527-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 10 |j 2005 |e 6 |b 28 |c 06 |h 514-520 |
author_variant |
j d jd j s js |
---|---|
matchkey_str |
drewniakjsoberaj:2005----:opstosfnainfzym |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s00500-005-0527-3 doi (DE-627)SPR006472583 (SPR)s00500-005-0527-3-e DE-627 ger DE-627 rakwb eng Drewniak, J. verfasserin aut Compositions of invariant fuzzy implications 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2005 Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 Sobera, J. aut Enthalten in Soft Computing Springer-Verlag, 2003 10(2005), 6 vom: 28. Juni, Seite 514-520 (DE-627)SPR006469531 nnns volume:10 year:2005 number:6 day:28 month:06 pages:514-520 https://dx.doi.org/10.1007/s00500-005-0527-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2005 6 28 06 514-520 |
spelling |
10.1007/s00500-005-0527-3 doi (DE-627)SPR006472583 (SPR)s00500-005-0527-3-e DE-627 ger DE-627 rakwb eng Drewniak, J. verfasserin aut Compositions of invariant fuzzy implications 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2005 Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 Sobera, J. aut Enthalten in Soft Computing Springer-Verlag, 2003 10(2005), 6 vom: 28. Juni, Seite 514-520 (DE-627)SPR006469531 nnns volume:10 year:2005 number:6 day:28 month:06 pages:514-520 https://dx.doi.org/10.1007/s00500-005-0527-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2005 6 28 06 514-520 |
allfields_unstemmed |
10.1007/s00500-005-0527-3 doi (DE-627)SPR006472583 (SPR)s00500-005-0527-3-e DE-627 ger DE-627 rakwb eng Drewniak, J. verfasserin aut Compositions of invariant fuzzy implications 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2005 Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 Sobera, J. aut Enthalten in Soft Computing Springer-Verlag, 2003 10(2005), 6 vom: 28. Juni, Seite 514-520 (DE-627)SPR006469531 nnns volume:10 year:2005 number:6 day:28 month:06 pages:514-520 https://dx.doi.org/10.1007/s00500-005-0527-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2005 6 28 06 514-520 |
allfieldsGer |
10.1007/s00500-005-0527-3 doi (DE-627)SPR006472583 (SPR)s00500-005-0527-3-e DE-627 ger DE-627 rakwb eng Drewniak, J. verfasserin aut Compositions of invariant fuzzy implications 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2005 Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 Sobera, J. aut Enthalten in Soft Computing Springer-Verlag, 2003 10(2005), 6 vom: 28. Juni, Seite 514-520 (DE-627)SPR006469531 nnns volume:10 year:2005 number:6 day:28 month:06 pages:514-520 https://dx.doi.org/10.1007/s00500-005-0527-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2005 6 28 06 514-520 |
allfieldsSound |
10.1007/s00500-005-0527-3 doi (DE-627)SPR006472583 (SPR)s00500-005-0527-3-e DE-627 ger DE-627 rakwb eng Drewniak, J. verfasserin aut Compositions of invariant fuzzy implications 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag Berlin Heidelberg 2005 Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 Sobera, J. aut Enthalten in Soft Computing Springer-Verlag, 2003 10(2005), 6 vom: 28. Juni, Seite 514-520 (DE-627)SPR006469531 nnns volume:10 year:2005 number:6 day:28 month:06 pages:514-520 https://dx.doi.org/10.1007/s00500-005-0527-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2005 6 28 06 514-520 |
language |
English |
source |
Enthalten in Soft Computing 10(2005), 6 vom: 28. Juni, Seite 514-520 volume:10 year:2005 number:6 day:28 month:06 pages:514-520 |
sourceStr |
Enthalten in Soft Computing 10(2005), 6 vom: 28. Juni, Seite 514-520 volume:10 year:2005 number:6 day:28 month:06 pages:514-520 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy implication Invariant implication Composition table Idempotent implication |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Drewniak, J. @@aut@@ Sobera, J. @@aut@@ |
publishDateDaySort_date |
2005-06-28T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006472583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006472583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-005-0527-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006472583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-005-0527-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drewniak, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compositions of invariant fuzzy implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition table</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idempotent implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobera, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">10(2005), 6 vom: 28. Juni, Seite 514-520</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:514-520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-005-0527-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield><subfield code="h">514-520</subfield></datafield></record></collection>
|
author |
Drewniak, J. |
spellingShingle |
Drewniak, J. misc Fuzzy implication misc Invariant implication misc Composition table misc Idempotent implication Compositions of invariant fuzzy implications |
authorStr |
Drewniak, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Compositions of invariant fuzzy implications Fuzzy implication (dpeaa)DE-He213 Invariant implication (dpeaa)DE-He213 Composition table (dpeaa)DE-He213 Idempotent implication (dpeaa)DE-He213 |
topic |
misc Fuzzy implication misc Invariant implication misc Composition table misc Idempotent implication |
topic_unstemmed |
misc Fuzzy implication misc Invariant implication misc Composition table misc Idempotent implication |
topic_browse |
misc Fuzzy implication misc Invariant implication misc Composition table misc Idempotent implication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
Compositions of invariant fuzzy implications |
ctrlnum |
(DE-627)SPR006472583 (SPR)s00500-005-0527-3-e |
title_full |
Compositions of invariant fuzzy implications |
author_sort |
Drewniak, J. |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
514 |
author_browse |
Drewniak, J. Sobera, J. |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Drewniak, J. |
doi_str_mv |
10.1007/s00500-005-0527-3 |
title_sort |
compositions of invariant fuzzy implications |
title_auth |
Compositions of invariant fuzzy implications |
abstract |
Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. © Springer-Verlag Berlin Heidelberg 2005 |
abstractGer |
Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. © Springer-Verlag Berlin Heidelberg 2005 |
abstract_unstemmed |
Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications. © Springer-Verlag Berlin Heidelberg 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
6 |
title_short |
Compositions of invariant fuzzy implications |
url |
https://dx.doi.org/10.1007/s00500-005-0527-3 |
remote_bool |
true |
author2 |
Sobera, J. |
author2Str |
Sobera, J. |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-005-0527-3 |
up_date |
2024-07-03T23:12:32.657Z |
_version_ |
1803601421435666433 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006472583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509102013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-005-0527-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006472583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-005-0527-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drewniak, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compositions of invariant fuzzy implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine sup-min compositions in a finite family of fuzzy implications. Since the composition of invariant fuzzy implications is an invariant function, then we get a kind of `multiplication table' for such implications. A multistage proof of such table is presented. As a result we obtain examples of finite semigroups of fuzzy implications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition table</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idempotent implication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobera, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">10(2005), 6 vom: 28. Juni, Seite 514-520</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:514-520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-005-0527-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield><subfield code="h">514-520</subfield></datafield></record></collection>
|
score |
7.400529 |