Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning

Abstract Recently, evolutionary multiobjective optimization (EMO) algorithms have been utilized for the design of accurate and interpretable fuzzy rule-based systems. This research area is often referred to as multiobjective genetic fuzzy systems (MoGFS), where EMO algorithms are used to search for...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ishibuchi, Hisao [verfasserIn]

Nakashima, Yusuke [verfasserIn]

Nojima, Yusuke [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2010

Schlagwörter:

Fuzzy rule-based classification

Genetic algorithms

Genetics-based machine learning

Multiobjective machine learning

Evolutionary multiobjective optimization

Übergeordnetes Werk:

Enthalten in: Soft Computing - Springer-Verlag, 2003, 15(2010), 12 vom: 17. Nov., Seite 2415-2434

Übergeordnetes Werk:

volume:15 ; year:2010 ; number:12 ; day:17 ; month:11 ; pages:2415-2434

Links:

Volltext

DOI / URN:

10.1007/s00500-010-0669-9

Katalog-ID:

SPR006478344

Nicht das Richtige dabei?

Schreiben Sie uns!