On the relationship among F-transform, fuzzy rough set and fuzzy topology
Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a spa...
Ausführliche Beschreibung
Autor*in: |
Perfilieva, I. [verfasserIn] Singh, Anand P. [verfasserIn] Tiwari, S. P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 21(2017), 13 vom: 24. März, Seite 3513-3523 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2017 ; number:13 ; day:24 ; month:03 ; pages:3513-3523 |
Links: |
---|
DOI / URN: |
10.1007/s00500-017-2559-x |
---|
Katalog-ID: |
SPR006492398 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006492398 | ||
003 | DE-627 | ||
005 | 20201124002826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-017-2559-x |2 doi | |
035 | |a (DE-627)SPR006492398 | ||
035 | |a (SPR)s00500-017-2559-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Perfilieva, I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the relationship among F-transform, fuzzy rough set and fuzzy topology |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. | ||
650 | 4 | |a -transform |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy partition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Residuated lattice |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy rough set |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy topology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy co-topology |7 (dpeaa)DE-He213 | |
700 | 1 | |a Singh, Anand P. |e verfasserin |4 aut | |
700 | 1 | |a Tiwari, S. P. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 21(2017), 13 vom: 24. März, Seite 3513-3523 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2017 |g number:13 |g day:24 |g month:03 |g pages:3513-3523 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-017-2559-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 21 |j 2017 |e 13 |b 24 |c 03 |h 3513-3523 |
author_variant |
i p ip a p s ap aps s p t sp spt |
---|---|
matchkey_str |
perfilievaisinghanandptiwarisp:2017----:nhrltosiaogtasomuzruhe |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00500-017-2559-x doi (DE-627)SPR006492398 (SPR)s00500-017-2559-x-e DE-627 ger DE-627 rakwb eng Perfilieva, I. verfasserin aut On the relationship among F-transform, fuzzy rough set and fuzzy topology 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 Singh, Anand P. verfasserin aut Tiwari, S. P. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 21(2017), 13 vom: 24. März, Seite 3513-3523 (DE-627)SPR006469531 nnns volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 https://dx.doi.org/10.1007/s00500-017-2559-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2017 13 24 03 3513-3523 |
spelling |
10.1007/s00500-017-2559-x doi (DE-627)SPR006492398 (SPR)s00500-017-2559-x-e DE-627 ger DE-627 rakwb eng Perfilieva, I. verfasserin aut On the relationship among F-transform, fuzzy rough set and fuzzy topology 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 Singh, Anand P. verfasserin aut Tiwari, S. P. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 21(2017), 13 vom: 24. März, Seite 3513-3523 (DE-627)SPR006469531 nnns volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 https://dx.doi.org/10.1007/s00500-017-2559-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2017 13 24 03 3513-3523 |
allfields_unstemmed |
10.1007/s00500-017-2559-x doi (DE-627)SPR006492398 (SPR)s00500-017-2559-x-e DE-627 ger DE-627 rakwb eng Perfilieva, I. verfasserin aut On the relationship among F-transform, fuzzy rough set and fuzzy topology 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 Singh, Anand P. verfasserin aut Tiwari, S. P. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 21(2017), 13 vom: 24. März, Seite 3513-3523 (DE-627)SPR006469531 nnns volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 https://dx.doi.org/10.1007/s00500-017-2559-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2017 13 24 03 3513-3523 |
allfieldsGer |
10.1007/s00500-017-2559-x doi (DE-627)SPR006492398 (SPR)s00500-017-2559-x-e DE-627 ger DE-627 rakwb eng Perfilieva, I. verfasserin aut On the relationship among F-transform, fuzzy rough set and fuzzy topology 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 Singh, Anand P. verfasserin aut Tiwari, S. P. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 21(2017), 13 vom: 24. März, Seite 3513-3523 (DE-627)SPR006469531 nnns volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 https://dx.doi.org/10.1007/s00500-017-2559-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2017 13 24 03 3513-3523 |
allfieldsSound |
10.1007/s00500-017-2559-x doi (DE-627)SPR006492398 (SPR)s00500-017-2559-x-e DE-627 ger DE-627 rakwb eng Perfilieva, I. verfasserin aut On the relationship among F-transform, fuzzy rough set and fuzzy topology 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 Singh, Anand P. verfasserin aut Tiwari, S. P. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 21(2017), 13 vom: 24. März, Seite 3513-3523 (DE-627)SPR006469531 nnns volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 https://dx.doi.org/10.1007/s00500-017-2559-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 21 2017 13 24 03 3513-3523 |
language |
English |
source |
Enthalten in Soft Computing 21(2017), 13 vom: 24. März, Seite 3513-3523 volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 |
sourceStr |
Enthalten in Soft Computing 21(2017), 13 vom: 24. März, Seite 3513-3523 volume:21 year:2017 number:13 day:24 month:03 pages:3513-3523 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
-transform Fuzzy partition Residuated lattice Fuzzy rough set Fuzzy topology Fuzzy co-topology |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Perfilieva, I. @@aut@@ Singh, Anand P. @@aut@@ Tiwari, S. P. @@aut@@ |
publishDateDaySort_date |
2017-03-24T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006492398 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006492398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-017-2559-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006492398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-017-2559-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perfilieva, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the relationship among F-transform, fuzzy rough set and fuzzy topology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy partition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residuated lattice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy rough set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy co-topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Anand P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tiwari, S. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">21(2017), 13 vom: 24. März, Seite 3513-3523</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:13</subfield><subfield code="g">day:24</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3513-3523</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-017-2559-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2017</subfield><subfield code="e">13</subfield><subfield code="b">24</subfield><subfield code="c">03</subfield><subfield code="h">3513-3523</subfield></datafield></record></collection>
|
author |
Perfilieva, I. |
spellingShingle |
Perfilieva, I. misc -transform misc Fuzzy partition misc Residuated lattice misc Fuzzy rough set misc Fuzzy topology misc Fuzzy co-topology On the relationship among F-transform, fuzzy rough set and fuzzy topology |
authorStr |
Perfilieva, I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
On the relationship among F-transform, fuzzy rough set and fuzzy topology -transform (dpeaa)DE-He213 Fuzzy partition (dpeaa)DE-He213 Residuated lattice (dpeaa)DE-He213 Fuzzy rough set (dpeaa)DE-He213 Fuzzy topology (dpeaa)DE-He213 Fuzzy co-topology (dpeaa)DE-He213 |
topic |
misc -transform misc Fuzzy partition misc Residuated lattice misc Fuzzy rough set misc Fuzzy topology misc Fuzzy co-topology |
topic_unstemmed |
misc -transform misc Fuzzy partition misc Residuated lattice misc Fuzzy rough set misc Fuzzy topology misc Fuzzy co-topology |
topic_browse |
misc -transform misc Fuzzy partition misc Residuated lattice misc Fuzzy rough set misc Fuzzy topology misc Fuzzy co-topology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
On the relationship among F-transform, fuzzy rough set and fuzzy topology |
ctrlnum |
(DE-627)SPR006492398 (SPR)s00500-017-2559-x-e |
title_full |
On the relationship among F-transform, fuzzy rough set and fuzzy topology |
author_sort |
Perfilieva, I. |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3513 |
author_browse |
Perfilieva, I. Singh, Anand P. Tiwari, S. P. |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Perfilieva, I. |
doi_str_mv |
10.1007/s00500-017-2559-x |
author2-role |
verfasserin |
title_sort |
on the relationship among f-transform, fuzzy rough set and fuzzy topology |
title_auth |
On the relationship among F-transform, fuzzy rough set and fuzzy topology |
abstract |
Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. |
abstractGer |
Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. |
abstract_unstemmed |
Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
13 |
title_short |
On the relationship among F-transform, fuzzy rough set and fuzzy topology |
url |
https://dx.doi.org/10.1007/s00500-017-2559-x |
remote_bool |
true |
author2 |
Singh, Anand P. Tiwari, S. P. |
author2Str |
Singh, Anand P. Tiwari, S. P. |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-017-2559-x |
up_date |
2024-07-03T23:16:20.646Z |
_version_ |
1803601660502605825 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006492398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-017-2559-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006492398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-017-2559-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perfilieva, I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the relationship among F-transform, fuzzy rough set and fuzzy topology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this work is to associate the concepts of fuzzy rough sets and fuzzy topologies/co-topologies with the F-transforms. The notions of the direct %$F^{\arrow }%$ and %$F^{\downarrow }%$-transforms are extended to the case where they are applied to an L-valued function on a space with an L-valued fuzzy partition. It is shown that these F-transforms are particular cases of upper and lower fuzzy approximation operators. Moreover, every F-transform component induces a continuous map between two associated fuzzy topological spaces or fuzzy co-topological spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy partition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residuated lattice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy rough set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy co-topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Anand P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tiwari, S. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">21(2017), 13 vom: 24. März, Seite 3513-3523</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:13</subfield><subfield code="g">day:24</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3513-3523</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-017-2559-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2017</subfield><subfield code="e">13</subfield><subfield code="b">24</subfield><subfield code="c">03</subfield><subfield code="h">3513-3523</subfield></datafield></record></collection>
|
score |
7.402194 |