New types of hesitant fuzzy soft ideals in BCK-algebras
Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the...
Ausführliche Beschreibung
Autor*in: |
Alshehri, H. A. [verfasserIn] Abujabal, H. A. [verfasserIn] Alshehri, N. O. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Hesitant fuzzy (implicative–positive implicative and commutative) ideals in Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 22(2018), 11 vom: 10. Jan., Seite 3675-3683 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2018 ; number:11 ; day:10 ; month:01 ; pages:3675-3683 |
Links: |
---|
DOI / URN: |
10.1007/s00500-018-3009-0 |
---|
Katalog-ID: |
SPR006497276 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006497276 | ||
003 | DE-627 | ||
005 | 20201124002842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-018-3009-0 |2 doi | |
035 | |a (DE-627)SPR006497276 | ||
035 | |a (SPR)s00500-018-3009-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Alshehri, H. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a New types of hesitant fuzzy soft ideals in BCK-algebras |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. | ||
650 | 4 | |a Hesitant fuzzy (implicative–positive implicative and commutative) ideals in |7 (dpeaa)DE-He213 | |
650 | 4 | |a -algebras |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |7 (dpeaa)DE-He213 | |
650 | 4 | |a -algebras |7 (dpeaa)DE-He213 | |
700 | 1 | |a Abujabal, H. A. |e verfasserin |4 aut | |
700 | 1 | |a Alshehri, N. O. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 22(2018), 11 vom: 10. Jan., Seite 3675-3683 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2018 |g number:11 |g day:10 |g month:01 |g pages:3675-3683 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-018-3009-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 22 |j 2018 |e 11 |b 10 |c 01 |h 3675-3683 |
author_variant |
h a a ha haa h a a ha haa n o a no noa |
---|---|
matchkey_str |
alshehrihaabujabalhaalshehrino:2018----:etpsfeiatuzsfiel |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00500-018-3009-0 doi (DE-627)SPR006497276 (SPR)s00500-018-3009-0-e DE-627 ger DE-627 rakwb eng Alshehri, H. A. verfasserin aut New types of hesitant fuzzy soft ideals in BCK-algebras 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Abujabal, H. A. verfasserin aut Alshehri, N. O. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2018), 11 vom: 10. Jan., Seite 3675-3683 (DE-627)SPR006469531 nnns volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 https://dx.doi.org/10.1007/s00500-018-3009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2018 11 10 01 3675-3683 |
spelling |
10.1007/s00500-018-3009-0 doi (DE-627)SPR006497276 (SPR)s00500-018-3009-0-e DE-627 ger DE-627 rakwb eng Alshehri, H. A. verfasserin aut New types of hesitant fuzzy soft ideals in BCK-algebras 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Abujabal, H. A. verfasserin aut Alshehri, N. O. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2018), 11 vom: 10. Jan., Seite 3675-3683 (DE-627)SPR006469531 nnns volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 https://dx.doi.org/10.1007/s00500-018-3009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2018 11 10 01 3675-3683 |
allfields_unstemmed |
10.1007/s00500-018-3009-0 doi (DE-627)SPR006497276 (SPR)s00500-018-3009-0-e DE-627 ger DE-627 rakwb eng Alshehri, H. A. verfasserin aut New types of hesitant fuzzy soft ideals in BCK-algebras 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Abujabal, H. A. verfasserin aut Alshehri, N. O. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2018), 11 vom: 10. Jan., Seite 3675-3683 (DE-627)SPR006469531 nnns volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 https://dx.doi.org/10.1007/s00500-018-3009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2018 11 10 01 3675-3683 |
allfieldsGer |
10.1007/s00500-018-3009-0 doi (DE-627)SPR006497276 (SPR)s00500-018-3009-0-e DE-627 ger DE-627 rakwb eng Alshehri, H. A. verfasserin aut New types of hesitant fuzzy soft ideals in BCK-algebras 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Abujabal, H. A. verfasserin aut Alshehri, N. O. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2018), 11 vom: 10. Jan., Seite 3675-3683 (DE-627)SPR006469531 nnns volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 https://dx.doi.org/10.1007/s00500-018-3009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2018 11 10 01 3675-3683 |
allfieldsSound |
10.1007/s00500-018-3009-0 doi (DE-627)SPR006497276 (SPR)s00500-018-3009-0-e DE-627 ger DE-627 rakwb eng Alshehri, H. A. verfasserin aut New types of hesitant fuzzy soft ideals in BCK-algebras 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Abujabal, H. A. verfasserin aut Alshehri, N. O. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2018), 11 vom: 10. Jan., Seite 3675-3683 (DE-627)SPR006469531 nnns volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 https://dx.doi.org/10.1007/s00500-018-3009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2018 11 10 01 3675-3683 |
language |
English |
source |
Enthalten in Soft Computing 22(2018), 11 vom: 10. Jan., Seite 3675-3683 volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 |
sourceStr |
Enthalten in Soft Computing 22(2018), 11 vom: 10. Jan., Seite 3675-3683 volume:22 year:2018 number:11 day:10 month:01 pages:3675-3683 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hesitant fuzzy (implicative–positive implicative and commutative) ideals in -algebras Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Alshehri, H. A. @@aut@@ Abujabal, H. A. @@aut@@ Alshehri, N. O. @@aut@@ |
publishDateDaySort_date |
2018-01-10T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006497276 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006497276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-3009-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006497276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-018-3009-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alshehri, H. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New types of hesitant fuzzy soft ideals in BCK-algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy (implicative–positive implicative and commutative) ideals in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebras</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebras</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abujabal, H. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alshehri, N. O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">22(2018), 11 vom: 10. Jan., Seite 3675-3683</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3675-3683</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-018-3009-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2018</subfield><subfield code="e">11</subfield><subfield code="b">10</subfield><subfield code="c">01</subfield><subfield code="h">3675-3683</subfield></datafield></record></collection>
|
author |
Alshehri, H. A. |
spellingShingle |
Alshehri, H. A. misc Hesitant fuzzy (implicative–positive implicative and commutative) ideals in misc -algebras misc Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in New types of hesitant fuzzy soft ideals in BCK-algebras |
authorStr |
Alshehri, H. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
New types of hesitant fuzzy soft ideals in BCK-algebras Hesitant fuzzy (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 -algebras (dpeaa)DE-He213 Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in (dpeaa)DE-He213 |
topic |
misc Hesitant fuzzy (implicative–positive implicative and commutative) ideals in misc -algebras misc Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |
topic_unstemmed |
misc Hesitant fuzzy (implicative–positive implicative and commutative) ideals in misc -algebras misc Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |
topic_browse |
misc Hesitant fuzzy (implicative–positive implicative and commutative) ideals in misc -algebras misc Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
New types of hesitant fuzzy soft ideals in BCK-algebras |
ctrlnum |
(DE-627)SPR006497276 (SPR)s00500-018-3009-0-e |
title_full |
New types of hesitant fuzzy soft ideals in BCK-algebras |
author_sort |
Alshehri, H. A. |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
3675 |
author_browse |
Alshehri, H. A. Abujabal, H. A. Alshehri, N. O. |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Alshehri, H. A. |
doi_str_mv |
10.1007/s00500-018-3009-0 |
author2-role |
verfasserin |
title_sort |
new types of hesitant fuzzy soft ideals in bck-algebras |
title_auth |
New types of hesitant fuzzy soft ideals in BCK-algebras |
abstract |
Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. |
abstractGer |
Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. |
abstract_unstemmed |
Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
11 |
title_short |
New types of hesitant fuzzy soft ideals in BCK-algebras |
url |
https://dx.doi.org/10.1007/s00500-018-3009-0 |
remote_bool |
true |
author2 |
Abujabal, H. A. Alshehri, N. O. |
author2Str |
Abujabal, H. A. Alshehri, N. O. |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-018-3009-0 |
up_date |
2024-07-03T23:17:19.565Z |
_version_ |
1803601722282606592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006497276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-3009-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006497276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-018-3009-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alshehri, H. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New types of hesitant fuzzy soft ideals in BCK-algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Molodtsov (Comput Math Appl 37:19–31, 1999) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. As a link between classical soft sets and hesitant fuzzy sets, the notion of hesitant fuzzy soft sets is introduced by Babitha and John (J New Results Sci 3:98–107, 2013). The aim of this paper is to apply notion of hesitant fuzzy soft set for dealing with several kinds of theories in BCK-algebras. The notions of hesitant fuzzy soft implicative ideal, hesitant fuzzy soft positive implicative ideal and hesitant fuzzy soft commutative ideal in BCK-algebras are introduced and related properties are investigated. Relations between a hesitant fuzzy soft subalgebra (ideal) and hesitant fuzzy soft (implicative, positive implicative and commutative) ideals are discussed. Conditions for a hesitant fuzzy soft ideal to be a hesitant fuzzy soft implicative ideal (positive implicative and commutative) are given and provided. Application of hesitant fuzzy soft sets in decision making is investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy (implicative–positive implicative and commutative) ideals in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebras</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hesitant fuzzy soft (implicative–positive implicative and commutative) ideals in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-algebras</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abujabal, H. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alshehri, N. O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">22(2018), 11 vom: 10. Jan., Seite 3675-3683</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3675-3683</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-018-3009-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2018</subfield><subfield code="e">11</subfield><subfield code="b">10</subfield><subfield code="c">01</subfield><subfield code="h">3675-3683</subfield></datafield></record></collection>
|
score |
7.399684 |