A fuzzy decision support system for multifactor authentication
Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different...
Ausführliche Beschreibung
Autor*in: |
Roy, Arunava [verfasserIn] Dasgupta, Dipankar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 22(2017), 12 vom: 11. Mai, Seite 3959-3981 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2017 ; number:12 ; day:11 ; month:05 ; pages:3959-3981 |
Links: |
---|
DOI / URN: |
10.1007/s00500-017-2607-6 |
---|
Katalog-ID: |
SPR006497462 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006497462 | ||
003 | DE-627 | ||
005 | 20201124002842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-017-2607-6 |2 doi | |
035 | |a (DE-627)SPR006497462 | ||
035 | |a (SPR)s00500-017-2607-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Roy, Arunava |e verfasserin |4 aut | |
245 | 1 | 2 | |a A fuzzy decision support system for multifactor authentication |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. | ||
650 | 4 | |a Multifactor authentication (MFA) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Authentication modalities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Active authentication |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy decision support system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Genetic algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimal selection strategy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Dasgupta, Dipankar |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 22(2017), 12 vom: 11. Mai, Seite 3959-3981 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2017 |g number:12 |g day:11 |g month:05 |g pages:3959-3981 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-017-2607-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 22 |j 2017 |e 12 |b 11 |c 05 |h 3959-3981 |
author_variant |
a r ar d d dd |
---|---|
matchkey_str |
royarunavadasguptadipankar:2017----:fzyeiinuprssefrutfc |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00500-017-2607-6 doi (DE-627)SPR006497462 (SPR)s00500-017-2607-6-e DE-627 ger DE-627 rakwb eng Roy, Arunava verfasserin aut A fuzzy decision support system for multifactor authentication 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 Dasgupta, Dipankar verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2017), 12 vom: 11. Mai, Seite 3959-3981 (DE-627)SPR006469531 nnns volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 https://dx.doi.org/10.1007/s00500-017-2607-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2017 12 11 05 3959-3981 |
spelling |
10.1007/s00500-017-2607-6 doi (DE-627)SPR006497462 (SPR)s00500-017-2607-6-e DE-627 ger DE-627 rakwb eng Roy, Arunava verfasserin aut A fuzzy decision support system for multifactor authentication 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 Dasgupta, Dipankar verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2017), 12 vom: 11. Mai, Seite 3959-3981 (DE-627)SPR006469531 nnns volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 https://dx.doi.org/10.1007/s00500-017-2607-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2017 12 11 05 3959-3981 |
allfields_unstemmed |
10.1007/s00500-017-2607-6 doi (DE-627)SPR006497462 (SPR)s00500-017-2607-6-e DE-627 ger DE-627 rakwb eng Roy, Arunava verfasserin aut A fuzzy decision support system for multifactor authentication 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 Dasgupta, Dipankar verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2017), 12 vom: 11. Mai, Seite 3959-3981 (DE-627)SPR006469531 nnns volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 https://dx.doi.org/10.1007/s00500-017-2607-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2017 12 11 05 3959-3981 |
allfieldsGer |
10.1007/s00500-017-2607-6 doi (DE-627)SPR006497462 (SPR)s00500-017-2607-6-e DE-627 ger DE-627 rakwb eng Roy, Arunava verfasserin aut A fuzzy decision support system for multifactor authentication 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 Dasgupta, Dipankar verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2017), 12 vom: 11. Mai, Seite 3959-3981 (DE-627)SPR006469531 nnns volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 https://dx.doi.org/10.1007/s00500-017-2607-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2017 12 11 05 3959-3981 |
allfieldsSound |
10.1007/s00500-017-2607-6 doi (DE-627)SPR006497462 (SPR)s00500-017-2607-6-e DE-627 ger DE-627 rakwb eng Roy, Arunava verfasserin aut A fuzzy decision support system for multifactor authentication 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 Dasgupta, Dipankar verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 22(2017), 12 vom: 11. Mai, Seite 3959-3981 (DE-627)SPR006469531 nnns volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 https://dx.doi.org/10.1007/s00500-017-2607-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 22 2017 12 11 05 3959-3981 |
language |
English |
source |
Enthalten in Soft Computing 22(2017), 12 vom: 11. Mai, Seite 3959-3981 volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 |
sourceStr |
Enthalten in Soft Computing 22(2017), 12 vom: 11. Mai, Seite 3959-3981 volume:22 year:2017 number:12 day:11 month:05 pages:3959-3981 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multifactor authentication (MFA) Authentication modalities Active authentication Fuzzy decision support system Genetic algorithm Optimal selection strategy |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Roy, Arunava @@aut@@ Dasgupta, Dipankar @@aut@@ |
publishDateDaySort_date |
2017-05-11T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006497462 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006497462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-017-2607-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006497462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-017-2607-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roy, Arunava</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A fuzzy decision support system for multifactor authentication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multifactor authentication (MFA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Authentication modalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active authentication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy decision support system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal selection strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dasgupta, Dipankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">22(2017), 12 vom: 11. Mai, Seite 3959-3981</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">day:11</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3959-3981</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-017-2607-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="b">11</subfield><subfield code="c">05</subfield><subfield code="h">3959-3981</subfield></datafield></record></collection>
|
author |
Roy, Arunava |
spellingShingle |
Roy, Arunava misc Multifactor authentication (MFA) misc Authentication modalities misc Active authentication misc Fuzzy decision support system misc Genetic algorithm misc Optimal selection strategy A fuzzy decision support system for multifactor authentication |
authorStr |
Roy, Arunava |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
A fuzzy decision support system for multifactor authentication Multifactor authentication (MFA) (dpeaa)DE-He213 Authentication modalities (dpeaa)DE-He213 Active authentication (dpeaa)DE-He213 Fuzzy decision support system (dpeaa)DE-He213 Genetic algorithm (dpeaa)DE-He213 Optimal selection strategy (dpeaa)DE-He213 |
topic |
misc Multifactor authentication (MFA) misc Authentication modalities misc Active authentication misc Fuzzy decision support system misc Genetic algorithm misc Optimal selection strategy |
topic_unstemmed |
misc Multifactor authentication (MFA) misc Authentication modalities misc Active authentication misc Fuzzy decision support system misc Genetic algorithm misc Optimal selection strategy |
topic_browse |
misc Multifactor authentication (MFA) misc Authentication modalities misc Active authentication misc Fuzzy decision support system misc Genetic algorithm misc Optimal selection strategy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
A fuzzy decision support system for multifactor authentication |
ctrlnum |
(DE-627)SPR006497462 (SPR)s00500-017-2607-6-e |
title_full |
A fuzzy decision support system for multifactor authentication |
author_sort |
Roy, Arunava |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3959 |
author_browse |
Roy, Arunava Dasgupta, Dipankar |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Roy, Arunava |
doi_str_mv |
10.1007/s00500-017-2607-6 |
author2-role |
verfasserin |
title_sort |
fuzzy decision support system for multifactor authentication |
title_auth |
A fuzzy decision support system for multifactor authentication |
abstract |
Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. |
abstractGer |
Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. |
abstract_unstemmed |
Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
12 |
title_short |
A fuzzy decision support system for multifactor authentication |
url |
https://dx.doi.org/10.1007/s00500-017-2607-6 |
remote_bool |
true |
author2 |
Dasgupta, Dipankar |
author2Str |
Dasgupta, Dipankar |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-017-2607-6 |
up_date |
2024-07-03T23:17:21.639Z |
_version_ |
1803601724456304640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006497462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-017-2607-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006497462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-017-2607-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roy, Arunava</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A fuzzy decision support system for multifactor authentication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multifactor authentication (MFA) is a growing trend for the accurate identification of the legitimate users through different modalities such as biometrics, nonbiometric, and cognitive behavior metric. In this paper, we have developed an adaptive MFA that considers the effects of different user devices, media, environments, and the frequency of authentication to detect the legitimate user. For this purpose, initially, we have evaluated the trustworthiness values of all the authentication modalities in different user devices and media using a nonlinear programming problem with probabilistic constraints. Finally, an evolutionary strategy, using fuzzy “IF–THEN” rule and genetic algorithm has been developed for the adaptive selection of authentication modalities. We have done a numerical simulation to prove the effectiveness and efficiency of the proposed method. Moreover, we have developed a prototype client–server-based application and have done a detailed user study to justify its better usability than the existing counterparts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multifactor authentication (MFA)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Authentication modalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active authentication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy decision support system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal selection strategy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dasgupta, Dipankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">22(2017), 12 vom: 11. Mai, Seite 3959-3981</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:12</subfield><subfield code="g">day:11</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3959-3981</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-017-2607-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2017</subfield><subfield code="e">12</subfield><subfield code="b">11</subfield><subfield code="c">05</subfield><subfield code="h">3959-3981</subfield></datafield></record></collection>
|
score |
7.399419 |